Unified

data derived with UnitSystems.jl DOI

Kinematic

Unified Metric Product
angle $\text{A}$ $\mathbb{1}$ $\left[\phi\right]$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\left[\phi^{2}\right]$
time $\text{T}$ $\text{T}$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{T}$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\text{g}_0\right]$
length $\text{L}$ $\text{L}$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{L}$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$
area $\text{L}^{2}$ $\text{L}^{2}$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{L}^{2}$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\text{g}_0^{2}\right]$
volume $\text{L}^{3}$ $\text{L}^{3}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
wavenumber $\text{L}^{-1}$ $\text{L}^{-1}$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{L}^{-1}$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
fuel efficiency $\text{L}^{-2}$ $\text{L}^{-2}$ $\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$
number density $\text{L}^{-3}$ $\text{L}^{-3}$ $\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$
frequency $\text{T}^{-1}$ $\text{T}^{-1}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
angular frequency $\text{T}^{-1}\text{A}$ $\text{T}^{-1}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
frequency drift $\text{T}^{-2}$ $\text{T}^{-2}$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$
stagnance $\text{L}^{-1}\text{T}$ $\text{L}^{-1}\text{T}$ $\left[\text{c}^{-1}\right]$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{L}\cdot \text{T}^{-1}$ $\left[\text{c}\right]$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{L}\cdot \text{T}^{-2}$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{L}\cdot \text{T}^{-3}$ $\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{L}\cdot \text{T}^{-4}$ $\left[\hbar^{-3}\text{c}^{7}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{L}\cdot \text{T}^{-5}$ $\left[\hbar^{-4}\text{c}^{9}\text{m}_\text{e}^{4}\phi^{-4}\text{g}_0^{-4}\right]$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{L}\cdot \text{T}^{-6}$ $\left[\hbar^{-5}\text{c}^{11}\text{m}_\text{e}^{5}\phi^{-5}\text{g}_0^{-5}\right]$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{L}^{3}\text{T}^{-1}$ $\left[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{L}^{2}$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{4}\text{g}_0^{2}\right]$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-1}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-3}\text{g}_0^{-1}\right]$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{L}^{-2}\text{T}$ $\left[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{T}$ $\left[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-3}\text{g}_0^{-1}\right]$

Mechanical

Unified Metric British Product
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{M}$ $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\left[\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
mass $\text{M}$ $\text{M}$ $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\left[\text{m}_\text{e}\right]$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{T}^{-1}$ $\text{F}\cdot \text{L}^{-1}\text{T}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}\right]$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{L}^{-1}$ $\text{F}\cdot \text{L}^{-2}\text{T}^{2}$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}\right]$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-2}$ $\text{F}\cdot \text{L}^{-3}\text{T}^{2}$ $\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}\right]$
density $\text{M}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-3}$ $\text{F}\cdot \text{L}^{-4}\text{T}^{2}$ $\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-3}\right]$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-2}$ $\text{F}\cdot \text{L}^{-3}$ $\left[\hbar^{-4}\text{c}^{6}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}\right]$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-1}\text{L}^{3}$ $\text{F}^{-1}\text{L}^{4}\text{T}^{-2}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{3}\right]$
force $\text{F}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\text{F}$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{L}\cdot \text{T}^{-2}$ $\text{L}\cdot \text{T}^{-2}$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$ $\left[\text{g}_0\right]$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}$ $\text{F}\cdot \text{L}^{-2}$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{M}^{-1}\text{L}\cdot \text{T}^{2}$ $\text{F}^{-1}\text{L}^{2}$ $\left[\hbar^{3}\text{c}^{-5}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{4}\right]$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{F}\cdot \text{L}^{-2}\text{T}$ $\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\left[\hbar\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{M}\cdot \text{L}^{2}$ $\text{F}\cdot \text{L}\cdot \text{T}^{2}$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-1}\phi^{2}\text{g}_0^{2}\right]$
impulse $\text{F}\cdot \text{T}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{F}\cdot \text{T}$ $\left[\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{F}\cdot \text{T}$ $\left[\text{c}\cdot \text{m}_\text{e}\right]$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{F}\cdot \text{L}\cdot \text{T}$ $\left[\hbar\right]$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{F}\cdot \text{T}^{-1}$ $\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}\right]$
energy $\text{F}\cdot \text{L}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$ $\text{F}\cdot \text{L}$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{L}^{2}\text{T}^{-2}$ $\text{L}^{2}\text{T}^{-2}$ $\left[\text{c}^{2}\text{g}_0^{-1}\right]$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{F}\cdot \text{L}\cdot \text{T}$ $\left[\hbar\cdot \phi\right]$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{T}^{-2}$ $\text{F}\cdot \text{L}^{-1}$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-3}$ $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\left[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}\right]$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{M}\cdot \text{T}^{-3}$ $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{T}^{-3}$ $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-5}\text{g}_0^{-4}\right]$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-3}\text{g}_0^{-2}\right]$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{F}\cdot \text{T}^{-1}$ $\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{M}\cdot \text{T}^{-1}$ $\text{F}\cdot \text{L}^{-1}\text{T}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ $\text{F}^{2}\text{L}^{-4}\text{T}$ $\left[\hbar^{-5}\text{c}^{8}\text{m}_\text{e}^{7}\phi^{-5}\text{g}_0^{-7}\right]$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{M}\cdot \text{L}^{-4}\text{T}^{-1}$ $\text{F}\cdot \text{L}^{-5}\text{T}$ $\left[\hbar^{-5}\text{c}^{6}\text{m}_\text{e}^{6}\phi^{-5}\text{g}_0^{-6}\right]$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{F}\cdot \text{L}^{-3}\text{T}$ $\left[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{M}^{-1}\text{L}^{4}\text{T}$ $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\left[\hbar^{5}\text{c}^{-6}\text{m}_\text{e}^{-6}\phi^{5}\text{g}_0^{6}\right]$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{M}^{-1}\text{T}^{2}$ $\text{F}^{-1}\text{L}$ $\left[\hbar^{2}\text{c}^{-4}\text{m}_\text{e}^{-3}\phi^{2}\text{g}_0^{2}\right]$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{M}\cdot \text{L}^{-4}$ $\text{F}\cdot \text{L}^{-5}\text{T}^{2}$ $\left[\hbar^{-4}\text{c}^{4}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-4}\right]$

Electromagnetic

Unified Metric EMU ESU Product
charge $\text{Q}$ $\text{Q}$ $\text{M}^{1/2}\text{L}^{1/2}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
charge density $\text{L}^{-3}\text{Q}$ $\text{L}^{-3}\text{Q}$ $\text{M}^{1/2}\text{L}^{-5/2}$ $\text{M}^{1/2}\text{L}^{-3/2}\text{T}^{-1}$ $\left[\hbar^{-5/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}\right]$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{L}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{-1/2}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ $\left[\hbar^{-1/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$
exposure $\text{M}^{-1}\text{Q}$ $\text{M}^{-1}\text{Q}$ $\text{M}^{-1/2}\text{L}^{1/2}$ $\text{M}^{-1/2}\text{L}^{3/2}\text{T}^{-1}$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{7/2}\text{T}^{-3}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ $\left[\hbar^{1/2}\text{c}^{5/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}\right]$
current $\text{T}^{-1}\text{Q}$ $\text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{-3/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-2}$ $\left[\hbar^{-5/2}\text{c}^{7/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}\right]$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ $\text{L}\cdot \text{T}^{-1}$ $\text{L}^{-1}\text{T}$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}$ $\text{L}^{-1}\text{T}$ $\text{L}\cdot \text{T}^{-1}$ $\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ $\text{L}^{2}\text{T}^{-1}$ $\text{T}$ $\left[\hbar\cdot \mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0\right]$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}$ $\text{L}^{-2}\text{T}$ $\text{T}^{-1}$ $\left[\hbar^{-1}\mu_0^{-1}\text{m}_\text{e}\cdot \phi^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{-1}\right]$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ $\text{L}^{-1}\text{T}^{2}$ $\text{L}$ $\left[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{L}$ $\text{L}^{-1}\text{T}^{2}$ $\left[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0\right]$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ $\text{L}^{-1}$ $\text{L}\cdot \text{T}^{-2}$ $\left[\hbar^{-1}\text{c}\cdot \mu_0^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{L}$ $\text{L}^{-1}\text{T}^{2}$ $\left[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ $\text{L}^{-2}\text{T}^{2}$ $\mathbb{1}$ $\left[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}\right]$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}\cdot \text{Q}^{-2}$ $\mathbb{1}$ $\text{L}^{-2}\text{T}^{2}$ $\left[\mu_0\right]$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$ $\mathbb{1}$ $\left[\lambda^{-1}\right]$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-1}\text{L}^{3}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$ $\mathbb{1}$ $\left[\lambda\right]$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{-1/2}$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}\right]$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ $\left[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-1}\right]$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}\right]$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-2}$ $\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ $\left[\hbar^{-3/2}\text{c}^{7/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-2}\right]$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{L}^{-1}\text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-2}$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ $\left[\hbar^{1/2}\text{c}^{3/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}\right]$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{1/2}$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{L}^{-2}\text{Q}$ $\text{M}^{1/2}\text{L}^{-3/2}$ $\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ $\left[\hbar^{-3/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}^{-1}\text{g}_0^{-2}\right]$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{-3/2}$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{L}\cdot \text{Q}$ $\text{M}^{1/2}\text{L}^{3/2}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ $\left[\hbar^{3/2}\text{c}^{-3/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0\right]$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}^{2}\text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{7/2}\text{T}^{-2}$ $\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\text{g}_0\right]$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ $\text{L}\cdot \text{T}^{2}$ $\text{L}^{3}$ $\left[\hbar^{3}\text{c}^{-5}\mu_0^{-1}\text{m}_\text{e}^{-3}\phi^{3}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{3}\right]$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{L}^{3}$ $\text{L}^{3}$ $\text{L}^{3}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{3/2}$ $\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{1/2}\text{g}_0\right]$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{L}^{-3}\text{T}\cdot \text{Q}$ $\text{M}^{1/2}\text{L}^{-5/2}\text{T}$ $\text{M}^{1/2}\text{L}^{-3/2}$ $\left[\hbar^{-3/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{-1/2}\text{g}_0^{-1}\right]$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}\cdot \text{T}^{-1}\text{Q}$ $\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ $\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}\right]$

Thermodynamic

Unified Metric British Product
temperature $\Theta$ $\Theta$ $\Theta$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\Theta^{-1}$ $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\left[\text{k}_\text{B}\right]$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{L}^{2}\text{T}^{-2}\Theta^{-1}$ $\text{L}^{2}\text{T}^{-2}\Theta^{-1}$ $\left[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\right]$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\Theta^{-1}$ $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\left[\text{k}_\text{B}\cdot \hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}\Theta^{-1}$ $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\left[\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}\Theta^{-1}$ $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\left[\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-1}\text{T}^{3}\Theta$ $\text{F}^{-1}\text{T}\cdot \Theta$ $\left[\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{3}\Theta$ $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\left[\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
thermal expansion $\Theta^{-1}$ $\Theta^{-1}$ $\Theta^{-1}$ $\left[\text{k}_\text{B}\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\text{g}_0\right]$
lapse rate $\text{L}^{-1}\Theta$ $\text{L}^{-1}\Theta$ $\text{L}^{-1}\Theta$ $\left[\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$

Molar

Unified Metric British Product
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{M}\cdot \text{N}^{-1}$ $\text{F}\cdot \text{L}^{-1}\text{T}^{2}\text{N}^{-1}$ $\left[\text{M}_\text{u}\right]$
molality $\text{M}^{-1}\text{N}$ $\text{M}^{-1}\text{N}$ $\text{F}^{-1}\text{L}\cdot \text{T}^{-2}\text{N}$ $\left[\text{M}_\text{u}^{-1}\right]$
molar amount $\text{N}$ $\text{N}$ $\text{N}$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
molarity $\text{L}^{-3}\text{N}$ $\text{L}^{-3}\text{N}$ $\text{L}^{-3}\text{N}$ $\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\text{M}_\text{u}^{-1}\phi^{-3}\text{g}_0^{-3}\right]$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{L}^{3}\text{N}^{-1}$ $\text{L}^{3}\text{N}^{-1}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot \phi^{3}\text{g}_0^{3}\right]$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\Theta^{-1}\text{N}^{-1}$ $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\left[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{N}^{-1}$ $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\left[\text{c}^{2}\text{M}_\text{u}\cdot \text{g}_0^{-1}\right]$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{M}^{-1}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}\text{N}^{-1}$ $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\left[\hbar\cdot \text{c}^{-2}\mu_0^{-1}\text{m}_\text{e}^{-2}\text{M}_\text{u}\cdot \phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{L}^{3}\text{N}^{-1}$ $\text{L}^{3}\text{N}^{-1}$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot \phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$
catalysis $\text{T}^{-1}\text{N}$ $\text{T}^{-1}\text{N}$ $\text{T}^{-1}\text{N}$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}\right]$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\left[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-3}\text{M}_\text{u}\cdot \phi^{2}\text{g}_0^{2}\right]$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{L}^{-2}\text{T}\cdot \text{N}$ $\left[\hbar^{-1}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}\right]$

Photometric

Unified Metric British Product
luminous flux $\text{J}$ $\text{J}$ $\text{J}$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{J}$ $\text{J}$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-2}\right]$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{J}$ $\text{L}^{-2}\text{J}$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
illuminance $\text{L}^{-2}\text{J}$ $\text{L}^{-2}\text{J}$ $\text{L}^{-2}\text{J}$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}\right]$
luminous energy $\text{T}\cdot \text{J}$ $\text{T}\cdot \text{J}$ $\text{T}\cdot \text{J}$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{K}_\text{cd}\cdot \text{g}_0^{-1}\right]$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{L}^{-2}\text{T}\cdot \text{J}$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\text{K}_\text{cd}\cdot \phi^{-2}\text{g}_0^{-3}\right]$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{3}\text{J}$ $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\left[\text{K}_\text{cd}\right]$

Constants Units

Name Unified Product
hyperfine transition $T^{-1}(\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
light speed $LT^{-1}$ $\left[\text{c}\right]$
Planck $FLT(\tau)$ $\left[\hbar\cdot \phi\right]$
Planck reduced $FLTA^{-1}$ $\left[\hbar\right]$
electron mass $M$ $\left[\text{m}_\text{e}\right]$
molar mass $MN^{-1}$ $\left[\text{M}_\text{u}\right]$
Boltzmann $FLΘ^{-1}$ $\left[\text{k}_\text{B}\right]$
vacuum permeability $FT^{2}Q^{-2}R^{-1}C^{2}$ $\left[\mu_0\right]$
rationalization $R$ $\left[\lambda\right]$
Lorentz $C^{-1}$ $\left[\alpha_\text{L}\right]$
luminous efficacy $F^{-1}L^{-1}TJ$ $\left[\text{K}_\text{cd}\right]$
gravity $F^{-1}MLT^{-2}$ $\left[\text{g}_0\right]$
radian $A$ $\left[\phi\right]$
turn $A(\tau)$ $\left[\phi\right]$
spat $A^{2}(\tau\cdot 2)$ $\left[\phi^{2}\right]$
Dalton $M(\mu_\text{eu}^{-1})$ $\left[\text{m}_\text{e}\right]$
proton mass $M(\mu_\text{eu}^{-1}\mu_\text{pu})$ $\left[\text{m}_\text{e}\right]$
Planck mass $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$
Newton gravitation $FM^{-2}L^{2}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}2^{2})$ $\left[\hbar\cdot \text{c}\cdot \text{m}_\text{e}^{-2}\phi\right]$
Gauss gravitation $T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{k}_\text{G}\cdot 2^{-15}3^{-7}5^{-5})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Einstein gravitation $FM^{-2}L^{-2}T^{4}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}\tau\cdot 2^{4})$ $\left[\hbar\cdot \text{c}^{-3}\text{m}_\text{e}^{-2}\phi\right]$
Hartree $FL(\alpha^{2})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Rydberg $L^{-1}(\alpha^{2}\tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
Bohr radius $LA^{-1}(\alpha^{-1})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$
electron radius $LA^{-1}(\alpha)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$
Avogadro $N^{-1}(\mu_\text{eu})$ $\left[\text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$
Molar gas $FLΘ^{-1}N^{-1}(\mu_\text{eu})$ $\left[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$
Stefan-Boltzmann $FL^{-1}T^{-1}Θ^{-4}(\tau^{2}2^{-4}3^{-1}5^{-1})$ $\left[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-2}\phi^{-3}\right]$
radiation density $FL^{-2}Θ^{-4}(\tau^{2}2^{-2}3^{-1}5^{-1})$ $\left[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-3}\phi^{-3}\right]$
vacuum permittivity $F^{-1}L^{-2}Q^{2}R$ $\left[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}\right]$
electrostatic $FL^{2}Q^{-2}(\tau^{-1}2^{-1})$ $\left[\text{c}^{2}\mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
magnetostatic $FT^{2}Q^{-2}(\tau^{-1}2^{-1})$ $\left[\mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
Biot-Savart $FT^{2}Q^{-2}C(\tau^{-1}2^{-1})$ $\left[\mu_0\cdot \lambda\cdot \alpha_\text{L}\right]$
elementary charge $Q(\alpha^{1/2}\tau^{1/2}2^{1/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
Faraday $QN^{-1}(\alpha^{1/2}\mu_\text{eu}\cdot \tau^{1/2}2^{1/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\text{M}_\text{u}\cdot \phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
vacuum impedance $FLTQ^{-2}$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
conductance quantum $F^{-1}L^{-1}T^{-1}Q^{2}(\alpha\cdot 2^{2})$ $\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$
Klitzing $FLTQ^{-2}(\alpha^{-1}2^{-1})$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
Josephson $F^{-1}L^{-1}T^{-1}QC^{-1}(\alpha^{1/2}\tau^{-1/2}2^{3/2})$ $\left[\hbar^{-1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}\right]$
magnetic flux quantum $FLTQ^{-1}C(\alpha^{-1/2}\tau^{1/2}2^{-3/2})$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$
magneton $FM^{-1}LTQA^{-1}C^{-1}(\alpha^{1/2}\tau^{1/2}2^{-1/2})$ $\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\right]$
Loschmidt $L^{-3}(\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3})$ $\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$
mechanical heat $FLΘ^{-1}N^{-1}(\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{2}3^{2}5\cdot 43^{-1})$ $\left[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$
Wien wavelength $LΘ/4.965114231744276$ $\left[\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \phi\right]$
Wien frequency $T^{-1}Θ^{-1}2.8214393721220787$ $\left[\text{k}_\text{B}\cdot \hbar^{-1}\phi^{-1}\right]$
Eddington $M(\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6})$ $\left[\text{m}_\text{e}\right]$
solar mass $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10})$ $\left[\text{m}_\text{e}\right]$
Jupiter mass $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot \tau\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$
Earth mass $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot \tau\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$
g-force $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
Earth radius $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
great circle $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
nautical mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
Hubble $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0\cdot \text{au}^{-1}2^{-11}3^{-4}5^{-6})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
cosmological $L^{-2}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\Omega_{\Lambda}\cdot \text{H}_0^{2}\text{au}^{-2}2^{-22}3^{-7}5^{-12})$ $\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$

Angle Units

Name Unified Product
turn $A(\tau)$ $\left[\phi\right]$
radian $A$ $\left[\phi\right]$
spatian $A(\tau^{1/2}2^{1/2})$ $\left[\phi\right]$
gradian $A(\tau\cdot 2^{-4}5^{-2})$ $\left[\phi\right]$
degree $A(\tau\cdot 2^{-3}3^{-2}5^{-1})$ $\left[\phi\right]$
arc minute $A(\tau\cdot 2^{-5}3^{-3}5^{-2})$ $\left[\phi\right]$
arc second $A(\tau\cdot 2^{-7}3^{-4}5^{-3})$ $\left[\phi\right]$

SolidAngle Units

Name Unified Product
spat $A^{2}(\tau\cdot 2)$ $\left[\phi^{2}\right]$
steradian $A^{2}$ $\left[\phi^{2}\right]$
square degree $A^{2}(\tau^{2}2^{-6}3^{-4}5^{-2})$ $\left[\phi^{2}\right]$

Time Units

Name Unified Product
second $T(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
minute $T(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{3}3\cdot 5)$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
hour $T(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{5}3^{2}5^{2})$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
day $T(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{8}3^{3}5^{2})$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
year $T(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\text{a}_\text{j}\cdot \tau\cdot 2^{8}3^{3}5^{2})$ $\left[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$

Length Units

Name Unified Product
angstrom $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-9}5^{-10})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
inch $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{-1}3^{-1})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
foot $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
survey foot $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
yard $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2\cdot 3)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
meter $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
Earth meter $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-8}5^{-7})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{6}3\cdot 5\cdot 11)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
statute mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot 2^{6}3\cdot 5\cdot 11)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
meridian mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{5}3^{-3}5^{5})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
admiralty mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{7}5\cdot 19)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
nautical mile $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
lunar distance $L14237$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
astronomical unit $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{au}\cdot \tau\cdot 2)$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
Jupiter distance $L259493$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
light-year $L(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\text{a}_\text{j}\cdot \tau\cdot 2^{8}3^{3}5^{2})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
parsec $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{au}\cdot 2^{8}3^{4}5^{3})$ $\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$

Speed Units

Name Unified Product
Bubnoff $LT^{-1}(\text{c}^{-1}\text{a}_\text{j}^{-1}2^{-7}3^{-3}5^{-2})$ $\left[\text{c}\right]$
feet per minute $LT^{-1}(\text{c}^{-1}\text{ft}\cdot 2^{-2}3^{-1}5^{-1})$ $\left[\text{c}\right]$
inches per second $LT^{-1}(\text{c}^{-1}\text{ft}\cdot 2^{-2}3^{-1})$ $\left[\text{c}\right]$
kilometers per hour $LT^{-1}(\text{c}^{-1}2^{-1}3^{-2}5)$ $\left[\text{c}\right]$
feet per second $LT^{-1}(\text{c}^{-1}\text{ft})$ $\left[\text{c}\right]$
miles per hour $LT^{-1}(\text{c}^{-1}\text{ft}\cdot 2\cdot 3^{-1}5^{-1}11)$ $\left[\text{c}\right]$
meters per second $LT^{-1}(\text{c}^{-1})$ $\left[\text{c}\right]$
miles per second $LT^{-1}(\text{c}^{-1}\text{ft}\cdot 2^{5}3\cdot 5\cdot 11)$ $\left[\text{c}\right]$

Area Units

Name Unified Product
barn $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{-26}5^{-28})$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
hectare $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{6}5^{4})$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
acre $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\text{ft}^{2}\tau^{2}2^{5}3^{2}5\cdot 11^{2})$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
survey acre $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\text{ft}_\text{US}^{2}\tau^{2}2^{5}3^{2}5\cdot 11^{2})$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$

Volume Units

Name Unified Product
liter $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}5^{-3})$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
gallon $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-3}3^{-2}7\cdot 11)$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
quart $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-5}3^{-2}7\cdot 11)$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
pint $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-6}3^{-2}7\cdot 11)$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
cup $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-7}3^{-2}7\cdot 11)$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
fluid ounce $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-10}3^{-2}7\cdot 11)$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
teaspoon $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{-3}5^{-5})$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$
tablespoon $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{-3}3\cdot 5^{-5})$ $\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$

Mass Units

Name Unified Product
gram $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3})$ $\left[\text{m}_\text{e}\right]$
Earth gram $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0^{-3/2}\text{GM}_\text{E}^{3/2}\tau^{3}2^{-31}5^{-24})$ $\left[\text{m}_\text{e}\right]$
kilogram $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ $\left[\text{m}_\text{e}\right]$
tonne $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{2}5^{3})$ $\left[\text{m}_\text{e}\right]$
ton $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{3}5^{3})$ $\left[\text{m}_\text{e}\right]$
pound (mass) $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$
ounce $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{-5})$ $\left[\text{m}_\text{e}\right]$
grain $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{-4}5^{-3}7^{-1})$ $\left[\text{m}_\text{e}\right]$
slug $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$
slinch $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3)$ $\left[\text{m}_\text{e}\right]$
hyl $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot 2^{-1})$ $\left[\text{m}_\text{e}\right]$

Force Units

Name Unified Product
dyne $F(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-7}5^{-5})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
newton $F(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
poundal $F(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
pound (force) $F(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \text{lb}\cdot \tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
kilopond $F(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$

Pressure Units

Name Unified Product
pounds per square inch $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
pascal $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
barye $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-5}5^{-1})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
bar $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2\cdot 5^{5})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
technical atmosphere $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \tau^{-3}5^{4})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
atmosphere $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{atm}\cdot \tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
inch mercury $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{in}_\text{Hg}^{-1}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
torr $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{atm}\cdot \tau^{-3}2^{-7}5^{-1}19^{-1})$ $\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$

Energy Units

Name Unified Product
erg $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-8}5^{-7})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
joule $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
foot-pound $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
calorie $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2\cdot 3^{2}5\cdot 43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
kilocalorie $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{4}3^{2}5^{4}43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
mean calorie $FL1.0001900224889804$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Earth calorie $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0^{-3/2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\text{GM}_\text{E}^{3/2}\tau^{3}2^{-26}3^{2}5^{-20}43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
thermal unit $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{4}5^{5}43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
gas gallon $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{8}3\cdot 5^{8}19\cdot 43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
ton TNT $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{10}3^{2}5^{10}43^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
electronvolt $FL(\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$

Power Units

Name Unified Product
watt $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
horsepower (Watt) $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{2}3^{3}5^{-1})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
horsepower (Metric) $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \tau^{-1}2^{-2}3\cdot 5^{2})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
horsepower $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{-1}5^{2}11)$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
electrical horsepower $FLT^{-1}373$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
tons refrigeration $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-1}2^{4}3^{-1}5^{6}43^{-1})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$
boiler horsepower $FLT^{-1}1339$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$

Thermodynamic Units

Name Unified Product
Kelvin $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3})$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Rankine $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4})$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Celsius $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}\text{T}_0\cdot 2^{3}5^{3})$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
Fahrenheit $Θ459.67$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
sea level $Θ288.15$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
boiling $Θ373.1339$ $\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
mole $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3})$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
Earth-mole $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0^{-3/2}\text{GM}_\text{E}^{3/2}\tau^{3}2^{-31}5^{-24})$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
pound-mole $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{-1})$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
slug-mole $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{-1})$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
slinch-mole $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3)$ $\left[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}\right]$
katal $T^{-1}N(\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-5}5^{-3})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}\right]$
amagat $L^{-3}N(\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3})$ $\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\text{M}_\text{u}^{-1}\phi^{-3}\text{g}_0^{-3}\right]$

Photometric Units

Name Unified Product
lumen $J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
candela $JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ $\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-2}\right]$
lux $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}\right]$
phot $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}\right]$
foot-candle $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}\right]$
nit $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
apostilb $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-3})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
stilb $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
lambert $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2\cdot 5^{4})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
foot-lambert $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-4}2^{-3})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
bril $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-10}5^{-7})$ $\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}\right]$
talbot $TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{K}_\text{cd}\cdot \text{g}_0^{-1}\right]$
lumerg $TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-8}5^{-7})$ $\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{K}_\text{cd}\cdot \text{g}_0^{-1}\right]$

Specialized Units

Name Unified Product
hertz $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
actions per minute $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}3^{-1}5^{-1})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
revolutions per minute $T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-3}3^{-1}5^{-1})$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
kayser $L^{-1}(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2\cdot 5^{2})$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
diopter $L^{-1}A(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}\right]$
rayleigh $L^{-2}T(\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{9}5^{10})$ $\left[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
flick $FL^{-2}T^{-1}A^{-2}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{5}5^{10})$ $\left[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-6}\text{g}_0^{-5}\right]$
g-force $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \tau^{-1}2^{-1})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
galileo $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}5^{-2})$ $\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}\right]$
eotvos $FM^{-1}L^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-11}5^{-9})$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-3}\right]$
darcy $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\text{atm}^{-1}\tau^{2}2^{-5}5^{-7})$ $\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$
poise $FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-4}5^{-1})$ $\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
reyn $FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2})$ $\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
stokes $L^{2}T^{-1}(\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-3}5^{-4})$ $\left[\hbar\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]$
rayl $FL^{-3}T(\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ $\left[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$
mpg equivalent $F^{-1}(\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\text{ft}\cdot \text{lb}^{-1}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\tau\cdot 2^{-2}5^{-7}11\cdot 19^{-1}43)$ $\left[\hbar\cdot \text{c}^{-3}\text{m}_\text{e}^{-2}\phi\cdot \text{g}_0^{2}\right]$
langley $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-2}2^{3}3^{2}5^{5}43^{-1})$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
jansky $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-29}5^{-26})$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
solar flux $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-25}5^{-22})$ $\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$
curie $T^{-1}37$ $\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]$
gray $FM^{-1}L(\text{c}^{-2})$ $\left[\text{c}^{2}\text{g}_0^{-1}\right]$
roentgen $M^{-1}Q/1.293$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$

Charge Units

Name Unified Product
coulomb $Q(\hbar^{-1/2}\text{c}^{1/2}\tau\cdot 2^{-3}5^{-7/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
Earth coulomb $Q(\hbar^{-1/2}\text{c}^{1/2}\text{g}_0^{-1}\text{GM}_\text{E}\cdot \tau^{3}2^{-21}5^{-35/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
abcoulomb $Q(\hbar^{-1/2}\text{c}^{1/2}\tau\cdot 2^{-2}5^{-5/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$
statcoulomb $Q(\hbar^{-1/2}\text{c}^{-1/2}\tau\cdot 2^{-4}5^{-9/2})$ $\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$

Current Units

Name Unified Product
ampere $T^{-1}Q(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-7/2})$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$
abampere $T^{-1}Q(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}2^{-3}5^{-5/2})$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$
statampere $T^{-1}Q(\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{2}2^{-5}5^{-9/2})$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$

Electromotive Units

Name Unified Product
volt $FLQ^{-1}(\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{2}5^{7/2})$ $\left[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-1}\right]$
abvolt $FLQ^{-1}(\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-6}5^{-9/2})$ $\left[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-1}\right]$
statvolt $FLQ^{-1}(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-4}5^{-5/2})$ $\left[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-1}\right]$

Inductance Units

Name Unified Product
henry $FLT^{2}Q^{-2}(\text{R}_{\infty}\cdot \alpha^{-2}2^{7}5^{7})$ $\left[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0\right]$
abhenry $FLT^{2}Q^{-2}(\text{R}_{\infty}\cdot \alpha^{-2}2^{-2}5^{-2})$ $\left[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0\right]$
stathenry $FLT^{2}Q^{-2}(\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}2^{2}5^{2})$ $\left[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0\right]$

Resistance Units

Name Unified Product
ohm $FLTQ^{-2}(\text{c}^{-1}\tau^{-1}2^{6}5^{7})$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
abohm $FLTQ^{-2}(\text{c}^{-1}\tau^{-1}2^{-3}5^{-2})$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$
statohm $FLTQ^{-2}(\text{c}\cdot \tau^{-1}2\cdot 5^{2})$ $\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]$

Conductance Units

Name Unified Product
siemens $F^{-1}L^{-1}T^{-1}Q^{2}(\text{c}\cdot \tau\cdot 2^{-6}5^{-7})$ $\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$
abmho $F^{-1}L^{-1}T^{-1}Q^{2}(\text{c}\cdot \tau\cdot 2^{3}5^{2})$ $\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$
statmho $F^{-1}L^{-1}T^{-1}Q^{2}(\text{c}^{-1}\tau\cdot 2^{-1}5^{-2})$ $\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$

Capacitance Units

Name Unified Product
farad $F^{-1}L^{-1}Q^{2}(\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}2^{-5}5^{-7})$ $\left[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$
abfarad $F^{-1}L^{-1}Q^{2}(\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}2^{4}5^{2})$ $\left[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$
statfarad $F^{-1}L^{-1}Q^{2}(\text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}5^{-2})$ $\left[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$

MagneticFlux Units

Name Unified Product
weber $FLTQ^{-1}C(\hbar^{-1/2}\text{c}^{-1/2}2^{3}5^{7/2})$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$
maxwell $FLTQ^{-1}C(\hbar^{-1/2}\text{c}^{-1/2}2^{-5}5^{-9/2})$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$
statweber $FLTQ^{-1}C(\hbar^{-1/2}\text{c}^{1/2}2^{-3}5^{-5/2})$ $\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$

MagneticFluxDensity Units

Name Unified Product
tesla $FL^{-1}TQ^{-1}C(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2\cdot 5^{7/2})$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$
gauss $FL^{-1}TQ^{-1}C(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-3}5^{-1/2})$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$
stattesla $FL^{-1}TQ^{-1}C(\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-1}5^{3/2})$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$

MagneticSpecialized Units

Name Unified Product
oersted $L^{-1}T^{-1}QRC^{-1}(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-3}5^{-1/2})$ $\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$
gilbert $T^{-1}QA^{-1}(\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-4}5^{-5/2})$ $\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-3/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$