|
Unified |
Metric |
Product |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\left[\phi\right]$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\left[\phi^{2}\right]$ |
time |
$\text{T}$ |
$\text{T}$ |
$\left[\hbar\cdot
\text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{T}$ |
$\left[\hbar\cdot
\text{c}^{-2}\text{m}_\text{e}^{-1}\text{g}_0\right]$ |
length |
$\text{L}$ |
$\text{L}$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{L}$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$ |
area |
$\text{L}^{2}$ |
$\text{L}^{2}$ |
$\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{L}^{2}$ |
$\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\text{g}_0^{2}\right]$ |
volume |
$\text{L}^{3}$ |
$\text{L}^{3}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}\right]$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{L}^{-1}$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{L}^{-1}$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{L}^{-2}$ |
$\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$ |
number density |
$\text{L}^{-3}$ |
$\text{L}^{-3}$ |
$\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$ |
frequency |
$\text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{T}^{-1}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{T}^{-2}$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{L}^{-1}\text{T}$ |
$\left[\text{c}^{-1}\right]$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
$\left[\text{c}\right]$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{L}\cdot
\text{T}^{-3}$ |
$\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{L}\cdot
\text{T}^{-4}$ |
$\left[\hbar^{-3}\text{c}^{7}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{L}\cdot
\text{T}^{-5}$ |
$\left[\hbar^{-4}\text{c}^{9}\text{m}_\text{e}^{4}\phi^{-4}\text{g}_0^{-4}\right]$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{L}\cdot
\text{T}^{-6}$ |
$\left[\hbar^{-5}\text{c}^{11}\text{m}_\text{e}^{5}\phi^{-5}\text{g}_0^{-5}\right]$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}$ |
$\left[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{L}^{2}$ |
$\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{4}\text{g}_0^{2}\right]$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-3}\text{g}_0^{-1}\right]$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{L}^{-2}\text{T}$ |
$\left[\hbar^{-1}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{L}^{-2}\text{T}$ |
$\left[\hbar^{-1}\text{m}_\text{e}\cdot
\phi^{-3}\text{g}_0^{-1}\right]$ |
|
Unified |
Metric |
British |
Product |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{M}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\left[\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
mass |
$\text{M}$ |
$\text{M}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\left[\text{m}_\text{e}\right]$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}\right]$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{2}$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}\right]$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{F}\cdot
\text{L}^{-3}\text{T}^{2}$ |
$\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}\right]$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{F}\cdot
\text{L}^{-4}\text{T}^{2}$ |
$\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-3}\right]$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}$ |
$\text{F}\cdot
\text{L}^{-3}$ |
$\left[\hbar^{-4}\text{c}^{6}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}\right]$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{F}^{-1}\text{L}^{4}\text{T}^{-2}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{3}\right]$ |
force |
$\text{F}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
$\text{F}$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-2}\right]$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
$\left[\text{g}_0\right]$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}$ |
$\text{F}\cdot
\text{L}^{-2}$ |
$\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{M}^{-1}\text{L}\cdot
\text{T}^{2}$ |
$\text{F}^{-1}\text{L}^{2}$ |
$\left[\hbar^{3}\text{c}^{-5}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{4}\right]$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\left[\hbar\cdot
\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}$ |
$\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-1}\phi^{2}\text{g}_0^{2}\right]$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{F}\cdot
\text{T}$ |
$\left[\text{c}\cdot \text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{F}\cdot
\text{T}$ |
$\left[\text{c}\cdot
\text{m}_\text{e}\right]$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\left[\hbar\right]$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{F}\cdot
\text{T}^{-1}$ |
$\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}\right]$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
$\text{F}\cdot
\text{L}$ |
$\left[\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\left[\text{c}^{2}\text{g}_0^{-1}\right]$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\left[\hbar\cdot
\phi\right]$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{T}^{-2}$ |
$\text{F}\cdot
\text{L}^{-1}$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}$ |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\left[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}\right]$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-5}\text{g}_0^{-4}\right]$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-3}\text{g}_0^{-2}\right]$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{F}\cdot
\text{T}^{-1}$ |
$\left[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\left[\hbar^{-5}\text{c}^{8}\text{m}_\text{e}^{7}\phi^{-5}\text{g}_0^{-7}\right]$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\left[\hbar^{-5}\text{c}^{6}\text{m}_\text{e}^{6}\phi^{-5}\text{g}_0^{-6}\right]$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\left[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{M}^{-1}\text{L}^{4}\text{T}$ |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\left[\hbar^{5}\text{c}^{-6}\text{m}_\text{e}^{-6}\phi^{5}\text{g}_0^{6}\right]$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{F}^{-1}\text{L}$ |
$\left[\hbar^{2}\text{c}^{-4}\text{m}_\text{e}^{-3}\phi^{2}\text{g}_0^{2}\right]$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{F}\cdot
\text{L}^{-5}\text{T}^{2}$ |
$\left[\hbar^{-4}\text{c}^{4}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-4}\right]$ |
|
Unified |
Metric |
EMU |
ESU |
Product |
charge |
$\text{Q}$ |
$\text{Q}$ |
$\text{M}^{1/2}\text{L}^{1/2}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ |
$\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{L}^{-3}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{-5/2}$ |
$\text{M}^{1/2}\text{L}^{-3/2}\text{T}^{-1}$ |
$\left[\hbar^{-5/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}\right]$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{L}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{-1/2}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ |
$\left[\hbar^{-1/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot
\phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{M}^{-1}\text{Q}$ |
$\text{M}^{-1/2}\text{L}^{1/2}$ |
$\text{M}^{-1/2}\text{L}^{3/2}\text{T}^{-1}$ |
$\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{7/2}\text{T}^{-3}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ |
$\left[\hbar^{1/2}\text{c}^{5/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}\right]$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ |
$\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot
\phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}\right]$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{-3/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-2}$ |
$\left[\hbar^{-5/2}\text{c}^{7/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}\right]$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{L}^{-1}\text{T}$ |
$\left[\text{c}\cdot \mu_0\cdot \lambda\cdot
\alpha_\text{L}^{2}\right]$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}$ |
$\text{L}^{-1}\text{T}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
$\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{T}$ |
$\left[\hbar\cdot
\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot
\alpha_\text{L}^{2}\text{g}_0\right]$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}$ |
$\text{L}^{-2}\text{T}$ |
$\text{T}^{-1}$ |
$\left[\hbar^{-1}\mu_0^{-1}\text{m}_\text{e}\cdot
\phi^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{-1}\right]$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ |
$\text{L}^{-1}\text{T}^{2}$ |
$\text{L}$ |
$\left[\hbar\cdot
\text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{L}$ |
$\text{L}^{-1}\text{T}^{2}$ |
$\left[\hbar\cdot
\text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot
\lambda\cdot
\alpha_\text{L}^{2}\text{g}_0\right]$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ |
$\text{L}^{-1}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\left[\hbar^{-1}\text{c}\cdot
\mu_0^{-1}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{L}$ |
$\text{L}^{-1}\text{T}^{2}$ |
$\left[\hbar\cdot
\text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ |
$\text{L}^{-2}\text{T}^{2}$ |
$\mathbb{1}$ |
$\left[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}\right]$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}\cdot \text{Q}^{-2}$ |
$\mathbb{1}$ |
$\text{L}^{-2}\text{T}^{2}$ |
$\left[\mu_0\right]$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
$\left[\lambda^{-1}\right]$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
$\left[\lambda\right]$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{-1/2}$ |
$\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{1/2}\text{m}_\text{e}\cdot
\phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}\right]$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ |
$\left[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot
\phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot
\text{g}_0^{-1}\right]$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-2}$ |
$\left[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot
\phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}\right]$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-2}$ |
$\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ |
$\left[\hbar^{-3/2}\text{c}^{7/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}\cdot
\text{g}_0^{-2}\right]$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{L}^{-1}\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{1/2}\text{T}^{-2}$ |
$\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ |
$\left[\hbar^{1/2}\text{c}^{3/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}\right]$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{1/2}$ |
$\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{L}^{-2}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{-3/2}$ |
$\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ |
$\left[\hbar^{-3/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}^{-1}\text{g}_0^{-2}\right]$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{-1/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{-3/2}$ |
$\left[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}\right]$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{L}\cdot
\text{Q}$ |
$\text{M}^{1/2}\text{L}^{3/2}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ |
$\left[\hbar^{3/2}\text{c}^{-3/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0\right]$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{7/2}\text{T}^{-2}$ |
$\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\text{g}_0\right]$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ |
$\text{L}\cdot
\text{T}^{2}$ |
$\text{L}^{3}$ |
$\left[\hbar^{3}\text{c}^{-5}\mu_0^{-1}\text{m}_\text{e}^{-3}\phi^{3}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{3}\right]$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{L}^{3}$ |
$\text{L}^{3}$ |
$\text{L}^{3}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{3/2}$ |
$\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{1/2}\text{g}_0\right]$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{L}^{-3}\text{T}\cdot \text{Q}$ |
$\text{M}^{1/2}\text{L}^{-5/2}\text{T}$ |
$\text{M}^{1/2}\text{L}^{-3/2}$ |
$\left[\hbar^{-3/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{-1/2}\text{g}_0^{-1}\right]$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}\text{Q}$ |
$\text{M}^{1/2}\text{L}^{3/2}\text{T}^{-1}$ |
$\text{M}^{1/2}\text{L}^{5/2}\text{T}^{-2}$ |
$\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}\right]$ |
|
Unified |
Metric |
British |
Product |
temperature |
$\Theta$ |
$\Theta$ |
$\Theta$ |
$\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\Theta^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\left[\text{k}_\text{B}\right]$ |
specific entropy |
$\text{F}\cdot
\text{M}^{-1}\text{L}\cdot \Theta^{-1}$ |
$\text{L}^{2}\text{T}^{-2}\Theta^{-1}$ |
$\text{L}^{2}\text{T}^{-2}\Theta^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\text{m}_\text{e}^{-1}\right]$ |
volume heat capacity |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}\Theta^{-1}$ |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$ |
thermal conductivity |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}\Theta^{-1}$ |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$ |
thermal conductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\Theta^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
thermal resistivity |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\text{M}^{-1}\text{L}^{-1}\text{T}^{3}\Theta$ |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\left[\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$ |
thermal resistance |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{3}\Theta$ |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\left[\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
thermal expansion |
$\Theta^{-1}$ |
$\Theta^{-1}$ |
$\Theta^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\text{c}^{-2}\text{m}_\text{e}^{-1}\text{g}_0\right]$ |
lapse rate |
$\text{L}^{-1}\Theta$ |
$\text{L}^{-1}\Theta$ |
$\text{L}^{-1}\Theta$ |
$\left[\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]$ |
|
Unified |
Metric |
British |
Product |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}\text{N}^{-1}$ |
$\left[\text{M}_\text{u}\right]$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{M}^{-1}\text{N}$ |
$\text{F}^{-1}\text{L}\cdot
\text{T}^{-2}\text{N}$ |
$\left[\text{M}_\text{u}^{-1}\right]$ |
molar amount |
$\text{N}$ |
$\text{N}$ |
$\text{N}$ |
$\left[\text{m}_\text{e}\cdot
\text{M}_\text{u}^{-1}\right]$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{L}^{-3}\text{N}$ |
$\text{L}^{-3}\text{N}$ |
$\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\text{M}_\text{u}^{-1}\phi^{-3}\text{g}_0^{-3}\right]$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{L}^{3}\text{N}^{-1}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot
\phi^{3}\text{g}_0^{3}\right]$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\Theta^{-1}\text{N}^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\left[\text{k}_\text{B}\cdot
\text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{N}^{-1}$ |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\left[\text{c}^{2}\text{M}_\text{u}\cdot
\text{g}_0^{-1}\right]$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{M}^{-1}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}\text{N}^{-1}$ |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\left[\hbar\cdot
\text{c}^{-2}\mu_0^{-1}\text{m}_\text{e}^{-2}\text{M}_\text{u}\cdot
\phi\cdot
\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{L}^{3}\text{N}^{-1}$ |
$\left[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot
\phi^{2}\lambda^{-1}\text{g}_0^{3}\right]$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{T}^{-1}\text{N}$ |
$\text{T}^{-1}\text{N}$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}\right]$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\left[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-3}\text{M}_\text{u}\cdot
\phi^{2}\text{g}_0^{2}\right]$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\left[\hbar^{-1}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}\right]$ |
Name |
Unified |
Product |
hyperfine transition |
$T^{-1}(\text{c}^{-1}\Delta\nu_\text{Cs}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
light speed |
$LT^{-1}$ |
$\left[\text{c}\right]$ |
Planck |
$FLT(\tau)$ |
$\left[\hbar\cdot
\phi\right]$ |
Planck reduced |
$FLTA^{-1}$ |
$\left[\hbar\right]$ |
electron mass |
$M$ |
$\left[\text{m}_\text{e}\right]$ |
molar mass |
$MN^{-1}$ |
$\left[\text{M}_\text{u}\right]$ |
Boltzmann |
$FLΘ^{-1}$ |
$\left[\text{k}_\text{B}\right]$ |
vacuum permeability |
$FT^{2}Q^{-2}R^{-1}C^{2}$ |
$\left[\mu_0\right]$ |
rationalization |
$R$ |
$\left[\lambda\right]$ |
Lorentz |
$C^{-1}$ |
$\left[\alpha_\text{L}\right]$ |
luminous efficacy |
$F^{-1}L^{-1}TJ$ |
$\left[\text{K}_\text{cd}\right]$ |
gravity |
$F^{-1}MLT^{-2}$ |
$\left[\text{g}_0\right]$ |
radian |
$A$ |
$\left[\phi\right]$ |
turn |
$A(\tau)$ |
$\left[\phi\right]$ |
spat |
$A^{2}(\tau\cdot
2)$ |
$\left[\phi^{2}\right]$ |
Dalton |
$M(\mu_\text{eu}^{-1})$ |
$\left[\text{m}_\text{e}\right]$ |
proton mass |
$M(\mu_\text{eu}^{-1}\mu_\text{pu})$ |
$\left[\text{m}_\text{e}\right]$ |
Planck mass |
$M(\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot
2^{-1})$ |
$\left[\text{m}_\text{e}\right]$ |
Newton gravitation |
$FM^{-2}L^{2}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}2^{2})$ |
$\left[\hbar\cdot
\text{c}\cdot
\text{m}_\text{e}^{-2}\phi\right]$ |
Gauss gravitation |
$T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{k}_\text{G}\cdot
2^{-15}3^{-7}5^{-5})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
Einstein gravitation |
$FM^{-2}L^{-2}T^{4}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}\tau\cdot
2^{4})$ |
$\left[\hbar\cdot
\text{c}^{-3}\text{m}_\text{e}^{-2}\phi\right]$ |
Hartree |
$FL(\alpha^{2})$ |
$\left[\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
Rydberg |
$L^{-1}(\alpha^{2}\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
Bohr radius |
$LA^{-1}(\alpha^{-1})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$ |
electron radius |
$LA^{-1}(\alpha)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0\right]$ |
Avogadro |
$N^{-1}(\mu_\text{eu})$ |
$\left[\text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$ |
Molar gas |
$FLΘ^{-1}N^{-1}(\mu_\text{eu})$ |
$\left[\text{k}_\text{B}\cdot
\text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$ |
Stefan-Boltzmann |
$FL^{-1}T^{-1}Θ^{-4}(\tau^{2}2^{-4}3^{-1}5^{-1})$ |
$\left[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-2}\phi^{-3}\right]$ |
radiation density |
$FL^{-2}Θ^{-4}(\tau^{2}2^{-2}3^{-1}5^{-1})$ |
$\left[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-3}\phi^{-3}\right]$ |
vacuum permittivity |
$F^{-1}L^{-2}Q^{2}R$ |
$\left[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}\right]$ |
electrostatic |
$FL^{2}Q^{-2}(\tau^{-1}2^{-1})$ |
$\left[\text{c}^{2}\mu_0\cdot \lambda\cdot
\alpha_\text{L}^{2}\right]$ |
magnetostatic |
$FT^{2}Q^{-2}(\tau^{-1}2^{-1})$ |
$\left[\mu_0\cdot
\lambda\cdot \alpha_\text{L}^{2}\right]$ |
Biot-Savart |
$FT^{2}Q^{-2}C(\tau^{-1}2^{-1})$ |
$\left[\mu_0\cdot
\lambda\cdot \alpha_\text{L}\right]$ |
elementary charge |
$Q(\alpha^{1/2}\tau^{1/2}2^{1/2})$ |
$\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$ |
Faraday |
$QN^{-1}(\alpha^{1/2}\mu_\text{eu}\cdot
\tau^{1/2}2^{1/2})$ |
$\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\text{M}_\text{u}\cdot
\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$ |
vacuum impedance |
$FLTQ^{-2}$ |
$\left[\text{c}\cdot \mu_0\cdot \lambda\cdot
\alpha_\text{L}^{2}\right]$ |
conductance quantum |
$F^{-1}L^{-1}T^{-1}Q^{2}(\alpha\cdot
2^{2})$ |
$\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]$ |
Klitzing |
$FLTQ^{-2}(\alpha^{-1}2^{-1})$ |
$\left[\text{c}\cdot \mu_0\cdot \lambda\cdot
\alpha_\text{L}^{2}\right]$ |
Josephson |
$F^{-1}L^{-1}T^{-1}QC^{-1}(\alpha^{1/2}\tau^{-1/2}2^{3/2})$ |
$\left[\hbar^{-1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}\right]$ |
magnetic flux
quantum |
$FLTQ^{-1}C(\alpha^{-1/2}\tau^{1/2}2^{-3/2})$ |
$\left[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\right]$ |
magneton |
$FM^{-1}LTQA^{-1}C^{-1}(\alpha^{1/2}\tau^{1/2}2^{-1/2})$ |
$\left[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\right]$ |
Loschmidt |
$L^{-3}(\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{T}_0^{-1}\text{atm}\cdot
\tau^{-3}2^{-3})$ |
$\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]$ |
mechanical heat |
$FLΘ^{-1}N^{-1}(\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot
\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{2}3^{2}5\cdot
43^{-1})$ |
$\left[\text{k}_\text{B}\cdot
\text{m}_\text{e}^{-1}\text{M}_\text{u}\right]$ |
Wien wavelength |
$LΘ/4.965114231744276$ |
$\left[\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}\cdot \phi\right]$ |
Wien frequency |
$T^{-1}Θ^{-1}2.8214393721220787$ |
$\left[\text{k}_\text{B}\cdot
\hbar^{-1}\phi^{-1}\right]$ |
Eddington |
$M(\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot
\text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6})$ |
$\left[\text{m}_\text{e}\right]$ |
solar mass |
$M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10})$ |
$\left[\text{m}_\text{e}\right]$ |
Jupiter mass |
$M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot
\tau\cdot 2^{-1})$ |
$\left[\text{m}_\text{e}\right]$ |
Earth mass |
$M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot
\tau\cdot 2^{-1})$ |
$\left[\text{m}_\text{e}\right]$ |
g-force |
$FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot
\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-2}\right]$ |
Earth radius |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot
2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
great circle |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
nautical mile |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
Hubble |
$T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0\cdot
\text{au}^{-1}2^{-11}3^{-4}5^{-6})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
cosmological |
$L^{-2}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\Omega_{\Lambda}\cdot
\text{H}_0^{2}\text{au}^{-2}2^{-22}3^{-7}5^{-12})$ |
$\left[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}\right]$ |
Name |
Unified |
Product |
angstrom |
$L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2^{-9}5^{-10})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
inch |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}\cdot \tau\cdot
2^{-1}3^{-1})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
foot |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}\cdot \tau\cdot 2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
survey foot |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot
2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
yard |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}\cdot \tau\cdot 2\cdot
3)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
meter |
$L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
Earth meter |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-8}5^{-7})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
mile |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}\cdot \tau\cdot 2^{6}3\cdot 5\cdot
11)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
statute mile |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot
2^{6}3\cdot 5\cdot 11)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
meridian mile |
$L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2^{5}3^{-3}5^{5})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
admiralty mile |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{ft}\cdot \tau\cdot 2^{7}5\cdot
19)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
nautical mile |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
lunar distance |
$L14237$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
astronomical unit |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{au}\cdot \tau\cdot 2)$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
Jupiter distance |
$L259493$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
light-year |
$L(\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\text{a}_\text{j}\cdot \tau\cdot
2^{8}3^{3}5^{2})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
parsec |
$L(\text{R}_{\infty}\cdot
\alpha^{-2}\text{au}\cdot 2^{8}3^{4}5^{3})$ |
$\left[\hbar\cdot
\text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
Name |
Unified |
Product |
lumen |
$J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ |
$\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot
\phi^{-1}\text{g}_0^{-2}\right]$ |
candela |
$JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ |
$\left[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot
\phi^{-3}\text{g}_0^{-2}\right]$ |
lux |
$L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-3}\text{g}_0^{-4}\right]$ |
phot |
$L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-3}\text{g}_0^{-4}\right]$ |
foot-candle |
$L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-3}2^{-4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-3}\text{g}_0^{-4}\right]$ |
nit |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
apostilb |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-3})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
stilb |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
lambert |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2\cdot
5^{4})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
foot-lambert |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-4}2^{-3})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
bril |
$L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-10}5^{-7})$ |
$\left[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot
\phi^{-5}\text{g}_0^{-4}\right]$ |
talbot |
$TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ |
$\left[\text{c}^{2}\text{m}_\text{e}\cdot
\text{K}_\text{cd}\cdot
\text{g}_0^{-1}\right]$ |
lumerg |
$TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-8}5^{-7})$ |
$\left[\text{c}^{2}\text{m}_\text{e}\cdot
\text{K}_\text{cd}\cdot
\text{g}_0^{-1}\right]$ |
Name |
Unified |
Product |
hertz |
$T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
actions per minute |
$T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}3^{-1}5^{-1})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
revolutions per
minute |
$T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-3}3^{-1}5^{-1})$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
kayser |
$L^{-1}(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2\cdot
5^{2})$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
diopter |
$L^{-1}A(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}\cdot
\text{m}_\text{e}\cdot
\text{g}_0^{-1}\right]$ |
rayleigh |
$L^{-2}T(\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{9}5^{10})$ |
$\left[\hbar^{-1}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
flick |
$FL^{-2}T^{-1}A^{-2}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{5}5^{10})$ |
$\left[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-6}\text{g}_0^{-5}\right]$ |
g-force |
$FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot
\tau^{-1}2^{-1})$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-2}\right]$ |
galileo |
$FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}5^{-2})$ |
$\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-2}\right]$ |
eotvos |
$FM^{-1}L^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-11}5^{-9})$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-3}\right]$ |
darcy |
$L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\text{atm}^{-1}\tau^{2}2^{-5}5^{-7})$ |
$\left[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}\right]$ |
poise |
$FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-4}5^{-1})$ |
$\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
reyn |
$FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{g}_0\cdot
\text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot
3^{2})$ |
$\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
stokes |
$L^{2}T^{-1}(\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2^{-3}5^{-4})$ |
$\left[\hbar\cdot
\text{m}_\text{e}^{-1}\phi\cdot
\text{g}_0\right]$ |
rayl |
$FL^{-3}T(\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ |
$\left[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]$ |
mpg equivalent |
$F^{-1}(\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\text{ft}\cdot
\text{lb}^{-1}\Omega_\text{it}\cdot
\text{V}_\text{it}^{-2}\tau\cdot 2^{-2}5^{-7}11\cdot
19^{-1}43)$ |
$\left[\hbar\cdot
\text{c}^{-3}\text{m}_\text{e}^{-2}\phi\cdot
\text{g}_0^{2}\right]$ |
langley |
$FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-2}2^{3}3^{2}5^{5}43^{-1})$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
jansky |
$FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-29}5^{-26})$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
solar flux |
$FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-25}5^{-22})$ |
$\left[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]$ |
curie |
$T^{-1}37$ |
$\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot
\phi^{-1}\text{g}_0^{-1}\right]$ |
gray |
$FM^{-1}L(\text{c}^{-2})$ |
$\left[\text{c}^{2}\text{g}_0^{-1}\right]$ |
roentgen |
$M^{-1}Q/1.293$ |
$\left[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\right]$ |