Physics Constants
The following are fundamental constants of physics:
\[\alpha = \frac{\lambda e^2}{4\pi\varepsilon_0\hbar c} = \frac{\lambda c\mu_0 (e\alpha_L)^2}{4\pi\hbar} = \frac{e^2k_e}{\hbar c} = \frac{\lambda e^2}{2\mu_0ch} = \frac{\lambda c\mu_0\alpha_L^2}{2R_K} = \frac{e^2Z_0}{2h}\]
There exists a deep relationship between the fundamental
constants, which also makes them very suitable as a basis
for UnitSystem
dimensional analysis. All of
the formulas on this page are part of the Test
suite to
guarantee their universal correctness.
\[\mu_{eu} = \frac{m_e}{m_u}, \qquad \mu_{pu} = \frac{m_p}{m_u}, \qquad \mu_{pe} = \frac{m_p}{m_e}, \qquad \alpha_\text{inv} = \frac{1}{\alpha}, \qquad \alpha_G = \left(\frac{m_e}{m_P}\right)^2\]
MeasureSystems.Universe
— Constant
μₑᵤ, μₚᵤ, μₚₑ, αinv, αG, ΩΛ
Physical measured dimensionless
Coupling
values with uncertainty are the
electron to proton mass ratio μₑᵤ
,
proton to atomic mass ratio μₚᵤ
, proton
to electron mass ratio μₚₑ
, inverted
fine structure constant αinv
, and the
gravitaional coupling constant αG
.
julia> μₑᵤ # electronunit(Universe)
μₑᵤ = 0.000548579909065(16)
julia> μₚᵤ # protonunit(Universe)
μₚᵤ = 1.007276466621(53)
julia> μₚₑ # protonelectron(Universe)
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)
julia> αinv # 1/finestructure(Universe)
α⁻¹ = 137.035999084(21)
julia> αG # coupling(Universe)
𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵
julia> ΩΛ # darkenergydensity(Universe)
ΩΛ = 0.6889(56)
Relativistic Constants
\[c = \frac1{\alpha_L\sqrt{\mu_0\varepsilon_0}} = \frac{1}{\alpha}\sqrt{E_h\frac{g_0}{m_e}} = \frac{g_0\hbar\alpha}{m_e r_e} = \frac{e^2k_e}{\hbar\alpha} = \frac{m_e^2G}{\hbar\alpha_G}\]
MeasureSystems.lightspeed
— Constant
lightspeed(U::UnitSystem) = 𝟏/sqrt(vacuumpermeability(U)*vacuumpermittivity(U))/lorentz(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹ [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Speed of light in a vacuum 𝘤
for
massless particles (m⋅s⁻¹ or ft⋅s⁻¹).
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉
\[h = 2\pi\hbar = \frac{2e\alpha_L}{K_J} = \frac{8\alpha}{\lambda c\mu_0K_J^2} = \frac{4\alpha_L^2}{K_J^2R_K}\]
MeasureSystems.planck
— Constant
planck(U::UnitSystem) = turn(x)*planckreduced(x)
action : [FLT], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLT⋅(τ = 6.283185307179586) [ħ⁻¹𝘤⁴mₑ³Kcd⋅ϕ⁻¹g₀⁻²] Unified
Planck constant 𝘩
is energy per
electromagnetic frequency (J⋅s or ft⋅lb⋅s).
julia> planck(SI2019) # J⋅s
𝘩 = 6.62607015×10⁻³⁴ [J⋅s] SI2019
julia> planck(SI2019)*lightspeed(SI2019) # J⋅m
𝘩⋅𝘤 = 1.9864458571489286×10⁻²⁵ [J⋅m] SI2019
julia> planck(CODATA) # J⋅s
RK⁻¹KJ⁻²2² = 6.626070039(82) × 10⁻³⁴ [J⋅s] CODATA
julia> planck(Conventional) # J⋅s
RK90⁻¹KJ90⁻²2² = 6.626068854361324×10⁻³⁴ [J⋅s] Conventional
julia> planck(SI2019)/elementarycharge(SI2019) # eV⋅s
𝘩⋅𝘦⁻¹ = 4.135667696923859×10⁻¹⁵ [Wb] SI2019
julia> planck(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m
𝘩⋅𝘤⋅𝘦⁻¹ = 1.2398419843320026×10⁻⁶ [V⋅m] SI2019
julia> planck(British) # ft⋅lb⋅s
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹ = 4.887138541095932×10⁻³⁴ [lb⋅ft⋅s] British
\[\hbar = \frac{h}{2\pi} = \frac{e\alpha_L}{\pi K_J} = \frac{4\alpha}{\pi\lambda c\mu_0K_J^2} = \frac{2\alpha_L}{\pi K_J^2R_K}\]
MeasureSystems.planckreduced
— Constant
planckreduced(U::UnitSystem) = planck(x)/turn(x)
angularmomentum : [FLTA⁻¹], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLTA⁻¹ [mₑ] Unified
Reduced Planck constant ħ
is a Planck
per radian (J⋅s⋅rad⁻¹ or ft⋅lb⋅s⋅rad⁻¹).
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019) # J⋅m⋅rad⁻¹
𝘩⋅𝘤⋅τ⁻¹ = 3.1615267734966903×10⁻²⁶ [J⋅m] SI2019
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> planckreduced(SI2019)/elementarycharge(SI2019) # eV⋅s⋅rad⁻¹
𝘩⋅𝘦⁻¹τ⁻¹ = 6.582119569509067×10⁻¹⁶ [Wb] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m⋅rad⁻¹
𝘩⋅𝘤⋅𝘦⁻¹τ⁻¹ = 1.973269804593025×10⁻⁷ [V⋅m] SI2019
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] British
\[m_P = \sqrt{\frac{\hbar c}{G}} = \frac{m_e}{\sqrt{\alpha_G}} = \frac{2R_\infty hg_0}{c\alpha^2\sqrt{\alpha_G}}\]
MeasureSystems.planckmass
— Constant
planckmass(U::UnitSystem) = electronmass(U)/sqrt(coupling(U))
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²mP⋅2⁻¹ = 2.389222(26) × 10²²) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Planck mass factor mP
from the
gravitational coupling constant αG
(kg
or slugs).
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 1.220890(13) × 10²⁸ [V] Metric
juila> planckmass(Metric) # kg
mP = 2.176434(24) × 10⁻⁸ [kg] Metric
juila> planckmass(Metric)/dalton(Metric) # Da
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅mP⋅2⁻¹ = 1.310679(14) × 10¹⁹ [𝟙] Metric
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric)/sqrt(𝟐^2*τ) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.435323(27) × 10²⁷ [V] Metric
julia> planckmass(PlanckGauss) # mP
𝟏 = 1.0 [mP] PlanckGauss
\[k = \frac{\sqrt{\hbar c}}{m_P} = \frac{\sqrt{\hbar c\alpha_G}}{m_e} = \frac{\alpha^2}{2g_0R_\infty}\sqrt{\frac{c^3\alpha_G}{2\pi h}} = c^2\sqrt{\frac{\kappa}{8\pi}}\]
MeasureSystems.gaussgravitation
— Constant
gaussgravitation(U::UnitSystem) = sqrt(gravitation(U)*solarmass(U)/astronomicalunit(U)^3)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²kG⋅2⁻¹⁵3⁻⁷5⁻⁵ = 2.56456351221(79) × 10⁻²⁸) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻³ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Gaussian gravitational constant k
of
Newton's laws (Hz or rad⋅D⁻¹).
julia> gaussgravitation(Engineering)
kG⋅τ⋅2⁻¹⁴3⁻⁷5⁻⁵ = 1.990983676471466×10⁻⁷ [s⁻¹rad] Engineering
julia> gaussgravitation(MetricGradian)
kG⋅2⁻¹⁰3⁻⁷5⁻³ = 1.2674995749028348×10⁻⁵ [s⁻¹gon] MetricGradian
julia> gaussgravitation(MetricDegree)
kG⋅2⁻¹¹3⁻⁵5⁻⁴ = 1.1407496174125516×10⁻⁵ [s⁻¹deg] MetricDegree
julia> gaussgravitation(MetricArcminute)
kG⋅2⁻⁹3⁻⁴5⁻³ = 0.0006844497704475308 [s⁻¹amin] MetricArcminute
julia> gaussgravitation(MetricArcsecond)
kG⋅2⁻⁷3⁻³5⁻² = 0.041066986226851857 [s⁻¹asec] MetricArcsecond
juila> gaussgravitation(MPH)
kG⋅τ⋅2⁻¹⁰3⁻⁵5⁻³ = 0.0007167541235297278 [h⁻¹] MPH
julia> gaussgravitation(IAU)
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉
\[G = k^2 = \frac{\hbar c}{m_P^2} = \frac{\hbar c\alpha_G}{m_e^2} = \frac{c^3\alpha^4\alpha_G}{8\pi g_0^2 R_\infty^2 h} = \frac{\kappa c^4}{8\pi}\]
MeasureSystems.gravitation
— Constant
gravitation(U::UnitSystem) = lightspeed(U)*planckreduced(U)/planckmass(U)^2
nonstandard : [FM⁻²L²], [F⁻¹L⁴T⁻⁴], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²]
FM⁻²L²⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵) [ħ⁻¹𝘤⁴μ₀⋅mₑ²Kcd⋅ϕ⁻¹λ⋅αL²g₀⁻¹] Unified
Universal gravitational constant G
of
Newton's law (m³⋅kg⁻¹⋅s⁻² or ft³⋅slug⁻¹⋅s⁻²).
juila> gravitation(Metric) # m³⋅kg⁻¹⋅s⁻²
𝘩⋅𝘤⋅mP⁻²τ⁻¹ = 6.67430(15) × 10⁻¹¹ [kg⁻¹m³s⁻²] Metric
julia> gravitation(English) # ft³⋅lbm⁻¹⋅s⁻²
𝘩⋅𝘤⋅g₀⁻¹ft⁻²lb⋅mP⁻²τ⁻¹ = 3.322929(73) × 10⁻¹¹ [lbf⋅lbm⁻²ft²] English
julia> gravitation(PlanckGauss)
𝟏 = 1.0 [mP⁻²] PlanckGauss
\[\kappa = \frac{8\pi G}{c^4} = \frac{8\pi\hbar}{c^3m_P^2} = \frac{8\pi\hbar\alpha_G}{c^3m_e^2} = \frac{\alpha^4\alpha_G}{g_0^2R_\infty^2 h c}\]
MeasureSystems.einstein
— Constant
einstein(U::UnitSystem) = 𝟐^2*τ*gravitation(U)/lightspeed(U)^4
nonstandard : [FM⁻²L⁻²T⁴], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
FM⁻²L⁻²T⁴⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²τ⋅2⁴ = 4.402779(97) × 10⁻⁴⁴) [ħ⁻⁵𝘤⁸μ₀⋅mₑ⁶Kcd⋅ϕ⁻⁵λ⋅αL²g₀⁻⁵] Unified
Einstein's gravitational constant from the Einstein field equations (s⋅²⋅m⁻¹⋅kg⁻¹).
julia> einstein(Metric) # s²⋅m⁻¹⋅kg⁻¹
𝘩⋅𝘤⁻³mP⁻²2² = 2.076648(46) × 10⁻⁴³ [N⁻¹] Metric
julia> einstein(IAU) # day²⋅au⁻¹⋅M☉⁻¹
𝘤⁻⁴au⁴kG²τ³2⁻⁴⁰3⁻²⁰5⁻¹⁴ = 8.27497346775(66) × 10⁻¹² [M☉⁻¹au⁻¹D²] IAU☉
Atomic & Nuclear Constants
\[m_u = \frac{M_u}{N_A} = \frac{m_e}{\mu_{eu}} = \frac{m_p}{\mu_{pu}} = \frac{2R_\infty hg_0}{\mu_{eu}c\alpha^2} = \frac{m_P}{\mu_{eu}}\sqrt{\alpha_G}\]
MeasureSystems.dalton
— Constant
dalton(U::UnitSystem) = molarmass(U)/avogadro(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹ = 1822.888486209(53)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Atomic mass unit Da
of 1/12 of the
C₁₂ carbon-12 atom's mass (kg or slugs).
julia> dalton(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.66053906660(51) × 10⁻²⁷ [kg] Metric
julia> dalton(Hartree) # mₑ
μₑᵤ⁻¹ = 1822.888486209(53) [𝟙] Hartree
julia> dalton(QCD) # mₚ
μₚᵤ⁻¹ = 0.992776097862(52) [mₚ] QCD
julia> dalton(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²μₑᵤ⁻¹2 = 1.49241808560(46) × 10⁻¹⁰ [J] Metric
julia> dalton(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 9.3149410242(29) × 10⁸ [V] SI2019
julia> dalton(British) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⋅lb⁻¹2 = 1.13783069118(35) × 10⁻²⁸ [slug] British
\[m_p = \mu_{pu} m_u = \mu_{pu}\frac{M_u}{N_A} = \mu_{pe}m_e = \mu_{pe}\frac{2R_\infty hg_0}{c\alpha^2} = m_P\mu_{pe}\sqrt{\alpha_G}\]
MeasureSystems.protonmass
— Constant
protonmass(U::UnitSystem) = protonunit(U)*dalton(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Proton mass mₚ
of subatomic particle
with +𝘦
elementary charge (kg or
mass).
julia> protonmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg] Metric
julia> protonmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 9.3827208816(29) × 10⁸ [V] SI2019
julia> protonmass(Metric)/dalton(Metric) # Da
μₚᵤ = 1.007276466621(53) [𝟙] Metric
julia> protonmass(Hartree) # mₑ
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11) [𝟙] Hartree
julia> protonmass(QCD) # mₚ
𝟏 = 1.0 [mₚ] QCD
\[m_e = \mu_{eu}m_u = \mu_{eu}\frac{M_u}{N_A} = \frac{m_p}{\mu_{pe}} = \frac{2R_\infty h g_0}{c\alpha^2} = m_P\sqrt{\alpha_G}\]
MeasureSystems.electronmass
— Constant
electronmass(U::UnitSystem) = protonmass(U)/protonelectron(U) # αinv^2*R∞*2𝘩/𝘤
mass : [M], [FL⁻¹T²], [M], [M], [M]
M [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Electron rest mass mₑ
of subatomic
particle with -𝘦
elementary charge (kg
or slugs).
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> electronmass(Metric)/dalton(Metric) # Da
μₑᵤ = 0.000548579909065(16) [𝟙] Metric
julia> electronmass(QCD) # mₚ
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCD
julia> electronmass(Hartree) # mₑ
𝟏 = 1.0 [𝟙] Hartree
julia> electronmass(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²2 = 8.1871057769(25) × 10⁻¹⁴ [J] Metric
julia> electronmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²2 = 510998.95000(16) [V] SI2019
julia> electronmass(English) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] English
\[E_h = \frac{m_e}{g_0}(c\alpha)^2 = \frac{\hbar c\alpha}{a_0} = \frac{g_0\hbar^2}{m_ea_0^2} = 2R_\infty hc = \frac{m_P}{g_0}\sqrt{\alpha_G}(c\alpha)^2\]
MeasureSystems.hartree
— Constant
hartree(U::UnitSystem) = electronmass(U)/gravity(U)*(lightspeed(U)*finestructure(U))^2
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(α² = 5.3251354520(16) × 10⁻⁵) [ħ⁵ᐟ²𝘤⁻⁵ᐟ²μ₀⁻¹ᐟ²mₑ⁻²ϕ⁵ᐟ²λ⁻¹ᐟ²g₀²] Unified
Hartree electric potential energy Eₕ
of the hydrogen atom at ground state is
2R∞*𝘩*𝘤
(J).
julia> hartree(SI2019)/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅2 = 27.211386245989(52) [V] SI2019
julia> hartree(Metric) # J
𝘩⋅𝘤⋅R∞⋅2 = 4.3597447222072(83) × 10⁻¹⁸ [J] Metric
julia> hartree(CGS) # erg
𝘩⋅𝘤⋅R∞⋅2⁸5⁷ = 4.3597447222072(83) × 10⁻¹¹ [erg] Gauss
julia> hartree(Metric)*avogadro(Metric)/kilo # kJ⋅mol⁻¹
𝘤²α²μₑᵤ⋅2⁻⁶5⁻⁶ = 2625.49964038(81) [J⋅mol⁻¹] Metric
julia> hartree(Metric)*avogadro(Metric)/kilocalorie(Metric) # kcal⋅mol⁻¹
𝘤²α²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁸3⁻²5⁻⁷43 = 627.09920344(19) [mol⁻¹] Metric
julia> 𝟐*rydberg(CGS) # Eₕ/𝘩/𝘤/100 cm⁻¹
R∞⋅2⁻¹5⁻² = 219474.63136320(42) [cm⁻¹] Gauss
julia> hartree(Metric)/planck(Metric) # Hz
𝘤⋅R∞⋅2 = 6.579683920502(13) × 10¹⁵ [Hz] Metric
julia> hartree(Metric)/boltzmann(Metric) # K
kB⁻¹NA⁻¹𝘤²α²μₑᵤ⋅2⁻³5⁻³ = 315775.024913(97) [K] Metric
In a Gaussian unit system where 4π*ε₀ ==
1
the Hartree energy is
𝘦^2/a₀
.
\[R_\infty = \frac{E_h}{2hc} = \frac{m_e c\alpha^2}{2hg_0} = \frac{\alpha}{4\pi a_0} = \frac{m_e r_e c}{2ha_0g_0} = \frac{\alpha^2m_ec}{4\pi\hbar g_0} = \frac{m_Pc\alpha^2\sqrt{\alpha_G}}{2hg_0}\]
MeasureSystems.rydberg
— Constant
rydberg(U::UnitSystem) = hartree(U)/2planck(U)/lightspeed(U) # Eₕ/2𝘩/𝘤
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(α²τ⁻¹2⁻¹ = 4.2376081491(13) × 10⁻⁶) [ħ⁵ᐟ²𝘤⁻¹¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁴Kcd⁻¹ϕ⁵ᐟ²λ⁻¹ᐟ²g₀³] Unified
Rydberg constant R∞
is lowest energy
photon capable of ionizing atom at ground state
(m⁻¹).
julia> rydberg(Metric) # m⁻¹
R∞ = 1.0973731568160(21) × 10⁷ [m⁻¹] Metric
The Rydberg constant for hydrogen RH
is R∞*mₚ/(mₑ+mₚ)
(m⁻¹).
julia> rydberg(Metric)*protonmass(Metric)/(electronmass(Metric)+protonmass(Metric)) # m⁻¹
𝘩⋅𝘤⁻¹R∞²α⁻²μₑᵤ⁻¹μₚᵤ⋅2⋅5.9753831112(19) × 10²⁶ = 1.09677583403(48) × 10⁷ [m⁻¹] Metric
Rydberg unit of photon energy Ry
is
𝘩*𝘤*R∞
or Eₕ/2
(J).
julia> hartree(Metric)/2 # J
𝘩⋅𝘤⋅R∞ = 2.1798723611036(42) × 10⁻¹⁸ [J] Metric
julia> hartree(SI2019)/𝟐/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞ = 13.605693122994(26) [V] SI2019
Rydberg photon frequency 𝘤*R∞
or
Eₕ/2𝘩
(Hz).
julia> lightspeed(Metric)*rydberg(Metric) # Hz
𝘤⋅R∞ = 3.2898419602509(63) × 10¹⁵ [Hz] Metric
Rydberg wavelength 1/R∞
(m).
julia> 𝟏/rydberg(Metric) # m
R∞⁻¹ = 9.112670505824(17) × 10⁻⁸ [m] Metric
julia> 𝟏/rydberg(Metric)/τ # m⋅rad⁻¹
R∞⁻¹τ⁻¹ = 1.4503265557696(28) × 10⁻⁸ [m] Metric
Precision measurements of the Rydberg constants are within a relative standard uncertainty of under 2 parts in 10¹², and is chosen to constrain values of other physical constants.
\[a_0 = \frac{g_0\hbar}{m_ec\alpha} = \frac{g_0\hbar^2}{k_e m_ee^2} = \frac{r_e}{\alpha^2} = \frac{\alpha}{4\pi R_\infty}\]
MeasureSystems.bohr
— Constant
bohr(U::UnitSystem) = planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)/finestructure(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α⁻¹ = 137.035999084(21)) [ħ⁻³ᐟ²𝘤³ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻¹] Unified
Bohr radius of the hydrogen atom in its ground
state a₀
(m).
julia> bohr(Metric) # m
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m] Metric
julia> bohr(IPS) # in
R∞⁻¹α⋅ft⁻¹τ⁻¹2⋅3 = 2.08337484607(32) × 10⁻⁹ [in] IPS
julia> bohr(Hartree) # a₀
𝟏 = 1.0 [a₀] Hartree
\[r_e = g_0\frac{\hbar\alpha}{m_ec} = \alpha^2a_0 = g_0\frac{e^2 k_e}{m_ec^2} = \frac{2hR_\infty g_0a_0}{m_ec} = \frac{\alpha^3}{4\pi R_\infty}\]
MeasureSystems.electronradius
— Constant
electronradius(U::UnitSystem) = finestructure(U)*planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α = 0.0072973525693(11)) [ħ⁻³ᐟ²𝘤³ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻¹] Unified
Classical electron radius or Lorentz radius or Thomson scattering length (m).
julia> electronradius(Metric) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Metric
julia> electronradius(CODATA) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] CODATA
julia> electronradius(Conventional) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Conventional
julia> electronradius(Hartree) # a₀
α² = 5.3251354520(16) × 10⁻⁵ [a₀] Hartree
\[\Delta\nu_{\text{Cs}} = \Delta\tilde\nu_{\text{Cs}}c = \frac{\Delta\omega_{\text{Cs}}}{2\pi} = \frac{c}{\Delta\lambda_{\text{Cs}}} = \frac{\Delta E_{\text{Cs}}}{h}\]
MeasureSystems.hyperfine
— Constant
hyperfine(U::UnitSystem) = frequency(ΔνCs = 9.19263177×10⁹,U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹ΔνCs⋅R∞⁻¹α²τ⁻¹2⁻¹ = 1.18409248138(36) × 10⁻¹¹) [ħ⁷ᐟ²𝘤⁻¹³ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁵Kcd⁻¹ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Unperturbed groundstate hyperfine transition
frequency ΔνCs
of caesium-133 atom
(Hz).
julia> hyperfine(Metric) # Hz
ΔνCs = 9.19263177×10⁹ [Hz] Metric
Thermodynamic Constants
\[M_u = m_uN_A = N_A\frac{m_e}{\mu_{eu}} = N_A\frac{m_p}{\mu_{pu}} = N_A\frac{2R_\infty hg_0}{\mu_{eu}c\alpha^2}\]
MeasureSystems.molarmass
— Constant
molarmass(U::UnitSystem) = avogadro(U)*electronmass(U)/electronunit(U)
molarmass : [MN⁻¹], [FL⁻¹T²N⁻¹], [MN⁻¹], [MN⁻¹], [MN⁻¹]
MN⁻¹ [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Molar mass constant Mᵤ
is the ratio
of the molarmass
and
relativemass
of a chemical.
julia> molarmass(CGS) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] International
\[N_A = \frac{R_u}{k_B} = \frac{M_u}{m_u} = M_u\frac{\mu_{eu}}{m_e} = M_u\frac{\mu_{eu}c\alpha^2}{2R_\infty h g_0}\]
MeasureSystems.avogadro
— Constant
avogadro(U::UnitSystem) = molargas(x)/boltzmann(x) # Mᵤ/dalton(x)
nonstandard : [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹]
N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [kB⁻¹ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified
Avogadro NA
is
molarmass(x)/dalton(x)
number of atoms
in a 12 g sample of C₁₂.
julia> avogadro(SI2019) # mol⁻¹
NA = 6.02214076×10²³ [mol⁻¹] SI2019
julia> avogadro(Metric) # mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 6.0221407621(19) × 10²³ [mol⁻¹] Metric
julia> avogadro(CODATA) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK⋅KJ²2⁻⁶5⁻³ = 6.022140863(75) × 10²³ [mol⁻¹] CODATA
julia> avogadro(Conventional) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK90⋅KJ90²2⁻⁶5⁻³ = 6.0221419396(19) × 10²³ [mol⁻¹] Conventional
julia> avogadro(English) # lb-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅lb⋅2⁻¹ = 2.73159710074(84) × 10²⁶ [lb-mol⁻¹] English
julia> avogadro(British) # slug-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅g₀⋅ft⁻¹lb⋅2⁻¹ = 8.7886537756(27) × 10²⁷ [slug-mol⁻¹] British
\[k_B = \frac{R_u}{N_A} = m_u\frac{R_u}{M_u} = \frac{m_e R_u}{\mu_{eu}M_u} = \frac{2R_uR_\infty h g_0}{M_u \mu_{eu}c\alpha^2}\]
MeasureSystems.boltzmann
— Constant
boltzmann(U::UnitSystem) = molargas(x)/avogadro(x)
entropy : [FLΘ⁻¹], [FLΘ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹]
FLΘ⁻¹ [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
Boltzmann constant kB
is the entropy
amount of a unit number microstate permutation.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> boltzmann(SI2019)/elementarycharge(SI2019) # eV⋅K⁻¹
kB⋅𝘦⁻¹ = 8.617333262145179×10⁻⁵ [V⋅K⁻¹] SI2019
julia> boltzmann(SI2019)/planck(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹ = 2.0836619123327576×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> boltzmann(CGS) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅K⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 3.2976728498006145×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(SI2019)*°R/calorie(SI2019) # calᵢₜ⋅°R⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻⁴43 = 1.832040472111452×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(Brtish) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> boltzmann(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹⋅K⁻¹
kB⋅𝘩⁻¹𝘤⁻¹ = 69.50348004861274 [m⁻¹K⁻¹] SI2019
julia> avogadro(SI2019)*boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅mol⁻¹⋅K⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [K⁻¹mol⁻¹] SI2019
julia> dB(boltzmann(SI2019)) # dB(W⋅K⁻¹⋅Hz⁻¹)
dB(kB) = -228.59916717321767 [dB(kg⋅m²s⁻²K⁻¹)] SI2019
\[R_u = k_B N_A = k_B\frac{M_u}{m_u} = k_BM_u\frac{\mu_{eu}}{m_e} = k_BM_u\frac{\mu_{eu}c\alpha^2}{2hR_\infty g_0}\]
MeasureSystems.molargas
— Constant
molargas(U::UnitSystem) = boltzmann(x)*avogadro(x)
molarentropy : [FLΘ⁻¹N⁻¹], [FLΘ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹]
FLΘ⁻¹N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [kB⁻¹ħ⁻³ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ³ϕ⁻³ᐟ²λ¹ᐟ²αL⋅g₀⁻³] Unified
Universal gas constant Rᵤ
is factored
into specific
gasconstant(x)*molarmass(x)
values.
julia> molargas(SI2019) # J⋅K⁻¹⋅mol⁻¹
kB⋅NA = 8.31446261815324 [J⋅K⁻¹mol⁻¹] SI2019
julia> molargas(English)/𝟐^4/𝟑^2 # psi⋅ft³⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2⁻¹3⁻⁴5⁴ = 10.731577089016287 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/atmosphere(English) # atm⋅ft³⋅R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2³3⁻²5⁴ = 0.7302405072952731 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/thermalunit(English) # BTU⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [°R⁻¹lb-mol⁻¹] English
julia> molargas(Metric)/atmosphere(Metric) # atm⋅m³⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹ = 8.205736608095969×10⁻⁵ [m³K⁻¹mol⁻¹] Metric
julia> molargas(Metric)/torr(Metric) # m³⋅torr⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹2³5⋅19 = 0.062363598221529364 [m³K⁻¹mol⁻¹] Metric
julia> molargas(English)/torr(English) # ft³⋅torr⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2⁶3⁻²5⁵19 = 554.9827855444075 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(CGS) # erg⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅2⁷5⁷ = 8.31446261815324×10⁷ [erg⋅K⁻¹mol⁻¹] Gauss
julia> molargas(English) # ft⋅lb⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2³3⁻²5⁴ = 1545.3471008183453 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(British) # ft⋅lb⋅°R⁻¹⋅slug-mol⁻¹
kB⋅NA⋅ft⁻²2³3⁻²5⁴ = 49720.07265826846 [lb⋅ft⋅°R⁻¹slug-mol⁻¹] British
julia> molargas(SI1976) # J⋅K⁻¹⋅mol⁻¹ (US1976 Standard Atmosphere)
8.31432 = 8.31432 [kg⋅m²s⁻²K⁻¹mol⁻¹] SI1976
\[\frac{p_0}{k_B T_0} = \frac{N_Ap_0}{R_uT_0} = \frac{\mu_{eu}M_up_0}{m_e R_u T_0} = \frac{M_u \mu_{eu}c\alpha^2p_0}{2R_uR_\infty hg_0 T_0}\]
MeasureSystems.loschmidt
— Function
loschmidt(U::UnitSystem) = atmosphere(U)/boltzmann(U)/temperature(T₀,SI2019,U)
nonstandard : [L⁻³], [L⁻³], [L⁻³], [L⁻³], [L⁻³]
L⁻³⋅(kB⁻¹R∞⁻³α⁶T₀⁻¹atm⋅τ⁻³2⁻³ = 1.5471467610(14) × 10⁻¹²) [ħ¹⁵ᐟ²𝘤⁻³³ᐟ²μ₀⁻³ᐟ²mₑ⁻¹²Kcd⁻³ϕ¹⁵ᐟ²λ⁻³ᐟ²g₀⁹] Unified
Number of molecules (number density) of an ideal gas in a unit volume (m⁻³ or ft⁻³).
julia> loschmidt(SI2019) # m⁻³
kB⁻¹T₀⁻¹atm = 2.686780111798444×10²⁵ [m⁻³] SI2019
julia> loschmidt(Metric,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³ = 2.68678011272(83) × 10²⁵ [m⁻³] Metric
julia> loschmidt(Conventional,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK90⋅KJ90²2⁻⁶5⁻³ = 2.68678063809(83) × 10²⁵ [m⁻³] Conventional
julia> loschmidt(CODATA,atm,T₀) # m⁻³
𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK⋅KJ²Rᵤ2014⁻¹2⁻⁶5⁻³ = 2.6867811(16) × 10²⁵ [m⁻³] CODATA
julia> loschmidt(SI1976,atm,T₀) # m⁻³
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³/8.31432 = 2.68682619991(83) × 10²⁵ [m⁻³] SI1976
julia> loschmidt(English) # ft⁻³
kB⁻¹ft³T₀⁻¹atm = 7.608114025223316×10²³ [ft⁻³] English
julia> loschmidt(IAU) # au⁻³
kB⁻¹au³T₀⁻¹atm = 8.99514898792(54) × 10⁵⁸ [au⁻³] IAU☉
\[\frac{S_0}{R_u} = log\left(\frac{\hbar^3}{p_0}\sqrt{\left(\frac{m_u}{2\pi g_0}\right)^3 \left(k_BT_0\right)^5}\right)+\frac{5}{2} = log\left(\frac{m_u^4}{p_0}\left(\frac{\hbar}{\sqrt{2\pi g_0}}\right)^3\sqrt{\frac{R_uT_0}{M_u}}^5\right)+\frac{5}{2}\]
MeasureSystems.sackurtetrode
— Function
sackurtetrode(U::UnitSystem,P=atm,T=𝟏,m=Da) = log(kB*T/P*sqrt(m*kB*T/τ/ħ^2)^3)+5/2
dimensionless : [𝟙], [𝟙], [𝟙], [𝟙], [𝟙]
log(FL⁻²Θ⁻⁵ᐟ²A³ᐟ²⋅(μₑᵤ⁻³ᐟ²atm⁻¹τ⁻³ᐟ²exp(2⁻¹5) = 0.594141574194(26)))
Ideal gas entropy density for pressure
P
, temperature T
, atomic
mass m
(dimensionless).
julia> sackurtetrode(Metric)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(Conventional)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(CODATA)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019,𝟏𝟎^5)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴τ³ᐟ²2¹³ᐟ²5⁵ᐟ²⋅12.182493960703473) = -1.1517075379 ± 1.2e-9
\[\frac{180 R_uV_{it}^2}{43 k_BN_A\Omega_{it}} = \frac{180 k_BM_uV_{it}^2}{43 R_um_u\Omega_{it}} = \frac{90 k_BM_u\mu_{eu}c\alpha^2V_{it}^2}{43 hg_0R_uR_\infty\Omega_{it}}\]
MeasureSystems.mechanicalheat
— Function
mechanicalheat(U::UnitSystem) = molargas(U)/molargas(Metric)*calorie(Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
Heat to raise 1 mass
unit of water by
1 temperature
unit, or
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637
mechanicalheat
per
molaramount
per temperature
units (J or ft⋅lb).
julia> mechanicalheat(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric
julia> mechanicalheat(English) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lbf⋅ft] English
julia> mechanicalheat(British) # ft⋅lb
ft⁻²Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 25036.480825188257 [lb⋅ft] British
\[\sigma = \frac{2\pi^5 k_B^4}{15h^3c^2} = \frac{\pi^2 k_B^4}{60\hbar^3c^2} = \frac{32\pi^5 h}{15c^6\alpha^8} \left(\frac{g_0R_uR_\infty}{\mu_{eu}M_u}\right)^4\]
MeasureSystems.stefan
— Constant
stefan(U::UnitSystem) = τ^5/𝟐^4*boltzmann(U)^4/(𝟑*𝟓*planck(U)^3*lightspeed(U)^2)
nonstandard : [FL⁻¹T⁻¹Θ⁻⁴], [FL⁻¹T⁻¹Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴]
FL⁻¹T⁻¹Θ⁻⁴⋅(τ²2⁻⁴3⁻¹5⁻¹ = 0.16449340668482262) [ħ⁻³𝘤²mₑ⋅Kcd⁻³ϕ⁻³g₀⁻⁴] Unified
Stefan-Boltzmann proportionality σ
of
black body radiation (W⋅m⁻²⋅K⁻⁴ or ?⋅ft⁻²⋅°R⁻⁴).
julia> stefan(SI2019) # W⋅m⁻²⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻²τ⁵2⁻⁴3⁻¹5⁻¹ = 5.670374419184431×10⁻⁸ [W⋅m⁻²K⁻⁴] SI2019
julia> stefan(Metric) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹²3⁻¹5¹¹ = 5.6703744114(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Metric
julia> stefan(Conventional) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁴3⁻¹5¹¹ = 5.6703733026(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Conventional
julia> stefan(CODATA) # W⋅m⁻²⋅K⁻⁴
𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁴3⁻¹5¹¹ = 5.670367(13) × 10⁻⁸ [W⋅m⁻²K⁻⁴] CODATA
julia> stefan(Metric)*day(Metric)/(calorie(Metric)*100^2) # cal⋅cm⁻²⋅day⁻¹⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁷5¹²43 = 0.0011701721683(14) [m⁻²K⁻⁴] Metric
julia> stefan(English) # lb⋅s⁻¹⋅ft⁻³⋅°R⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴g₀⁻¹ft⋅lb⁻¹τ⁵2¹²3⁻⁹5¹⁵ = 3.7012656963(46) × 10⁻¹⁰ [lbf⋅ft⁻¹s⁻¹°R⁻⁴] English
\[a = 4\frac{\sigma}{c} = \frac{8\pi^5 k_B^4}{15h^3c^3} = \frac{\pi^2 k_B^4}{15\hbar^3c^3} = \frac{2^7\pi^5 h}{15c^7\alpha^8} \left(\frac{g_0R_uR_\infty}{\mu_{eu}M_u}\right)^4\]
MeasureSystems.radiationdensity
— Constant
radiationdensity(U::UnitSystem) = 𝟐^2*stefan(U)/lightspeed(U)
nonstandard : [FL⁻²Θ⁻⁴], [FL⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴]
FL⁻²Θ⁻⁴⋅(τ²2⁻²3⁻¹5⁻¹ = 0.6579736267392905) [ħ⁻⁴𝘤³mₑ²Kcd⁻³ϕ⁻⁴g₀⁻⁵] Unified
Raditation density constant of black body radiation (J⋅m⁻³⋅K⁻⁴ or lb⋅ft⁻²⋅°R⁻⁴).
julia> radiationdensity(Metric) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹⁴3⁻¹5¹¹ = 7.5657332399(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Metric
julia> radiationdensity(SI2019) # J⋅m⁻³⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻³τ⁵2⁻²3⁻¹5⁻¹ = 7.565733250280007×10⁻¹⁶ [J⋅m⁻³K⁻⁴] SI2019
julia> radiationdensity(Conventional) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁶3⁻¹5¹¹ = 7.5657317605(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Conventional
julia> radiationdensity(CODATA) # J⋅m⁻³⋅K⁻⁴
𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁶3⁻¹5¹¹ = 7.565723(17) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] CODATA
julia> radiationdensity(International) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁴3⁻¹5¹¹ = 7.5644848940(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] International
\[b = \frac{hc/k_B}{5+W_0(-5 e^{-5})} = \frac{hcM_u/(m_uR_u)}{5+W_0(-5 e^{-5})} = \frac{M_u \mu_{eu}c^2\alpha^2/(2R_uR_\infty g_0)}{5+W_0(-5 e^{-5})}\]
MeasureSystems.wienwavelength
— Constant
wienwavelength(U::UnitSystem) = planck(U)*lightspeed(U)/boltzmann(U)/(𝟓+W₀(-𝟓*exp(-𝟓)))
nonstandard : [LΘ], [LΘ], [LΘ], [LΘ], [LΘ]
LΘ/4.965114231744276 [ħ⋅Kcd⋅ϕ⋅g₀] Unified
Wien wavelength displacement law constant based on
Lambert W₀
evaluation (m⋅K or
ft⋅°R).
julia> wienwavelength(Metric) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Metric
julia> wienwavelength(SI2019) # m⋅K
kB⁻¹𝘩⋅𝘤/4.965114231744276 = 0.0028977719551851727 [m⋅K] SI2019
julia> wienwavelength(Conventional) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Conventional
julia> wienwavelength(CODATA) # m⋅K
𝘤²R∞⁻¹α²μₑᵤ⋅Rᵤ2014⁻¹2⁻⁴5⁻³/4.965114231744276 = 0.0028977729(17) [m⋅K] CODATA
julia> wienwavelength(English) # ft⋅°R
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅ft⁻¹2⁻⁴3²5⁻⁴/4.965114231744276 = 0.0171128265129(53) [ft⋅°R] English
\[\frac{3+W_0(-3 e^{-3})}{h/k_B} = \frac{3+W_0(-3 e^{-3})}{hM_u/(m_uR_u)} = \frac{3+W_0(-3 e^{-3})}{M_u \mu_{eu}c\alpha^2/(2R_uR_\infty g_0)}\]
MeasureSystems.wienfrequency
— Constant
wienfrequency(U::UnitSystem) = (𝟑+W₀(-𝟑*exp(-𝟑)))*boltzmann(U)/planck(U)
nonstandard : [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹]
T⁻¹Θ⁻¹⋅2.8214393721220787 [𝘤⁻¹mₑ⁻¹Kcd⁻¹] Unified
Wien frequency radiation law constant based on
Lambert W₀
evaluation (Hz⋅K⁻¹).
julia> wienfrequency(Metric) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Metric
julia> wienfrequency(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹⋅2.8214393721220787 = 5.8789257576468254×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> wienfrequency(Conventional) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Conventional
julia> wienfrequency(CODATA) # Hz⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Rᵤ2014⋅2⁴5³⋅2.8214393721220787 = 5.8789238(34) × 10¹⁰ [Hz⋅K⁻¹] CODATA
julia> wienfrequency(English) # Hz⋅°R⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅2.8214393721220787 = 3.2660698642(10) × 10¹⁰ [Hz⋅°R⁻¹] English
\[K_{\text{cd}} = \frac{I_v}{\int_0^\infty \bar{y}(\lambda)\cdot\frac{dI_e}{d\lambda}d\lambda}, \qquad \bar{y}\left(\frac{c}{540\times 10^{12}}\right)\cdot I_e = 1\]
MeasureSystems.luminousefficacy
— Constant
luminousefficacy(U::UnitSystem) = Kcd*power(U)
luminousefficacy(U::UnitSystem{𝟏}) = 𝟏
luminousefficacy : [F⁻¹L⁻¹TJ], [F⁻¹L⁻¹TJ], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J]
F⁻¹L⁻¹TJ [mₑ⋅Mᵤ⁻¹] Unified
Luminous efficacy of monochromatic radiation
Kcd
of frequency 540 THz (lm⋅W⁻¹).
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] Metric
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATA
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] Conventional
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
julia> luminousefficacy(British) # lm⋅s³⋅slug⋅ft⁻²
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] British
Electromagnetic Constants
\[\lambda = \frac{4\pi\alpha_B}{\mu_0\alpha_L} = 4\pi k_e\varepsilon_0 = Z_0\varepsilon_0c\]
MeasureSystems.rationalization
— Constant
rationalization(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/lorentz(U)
demagnetizingfactor : [R], [𝟙], [𝟙], [𝟙], [𝟙]
R [ϕ] Unified
Constant of magnetization and polarization density
or
spat(U)*coulomb(U)*permittivity(U)
.
julia> rationalization(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] Gauss
\[\alpha_L = \frac{1}{c\sqrt{\mu_0\varepsilon_0}} = \frac{\alpha_B}{\mu_0\varepsilon_0k_e} = \frac{4\pi \alpha_B}{\lambda\mu_0} = \frac{k_m}{\alpha_B}\]
MeasureSystems.lorentz
— Constant
lorentz(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/rationalization(U)
nonstandard : [C⁻¹], [𝟙], [𝟙], [𝟙], [𝟙]
C⁻¹ [λ] Unified
Electromagnetic proportionality constant
αL
for the Lorentz's law force
(dimensionless).
julia> lorentz(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
\[\alpha_B = \mu_0\alpha_L\frac{\lambda}{4\pi} = \alpha_L\mu_0\varepsilon_0k_e = \frac{k_m}{\alpha_L} = \frac{k_e}{c}\sqrt{\mu_0\varepsilon_0}\]
MeasureSystems.biotsavart
— Constant
biotsavart(U::UnitSystem) = vacuumpermeability(U)*lorentz(U)*rationalization(U)/𝟐/τ
nonstandard : [FT²Q⁻²C], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²C⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [ħ⋅𝘤⁻²mₑ⁻¹ϕ²λ⋅g₀] Unified
Magnetostatic proportionality constant
αB
for the Biot-Savart's law (H/m).
julia> biotsavart(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0×10⁻⁷ [H⋅m⁻¹] Metric
julia> biotsavart(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> biotsavart(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> biotsavart(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> biotsavart(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037726×10⁻⁸ [H⋅m⁻¹] International
julia> biotsavart(InternationalMean) # H⋅m⁻¹
2⁻⁷5⁻⁷/1.00049 = 9.995102399824085×10⁻⁸ [H⋅m⁻¹] InternationalMean
julia> biotsavart(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> biotsavart(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> biotsavart(Gauss) # abH⋅cm⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
julia> biotsavart(HLU) # hlH⋅cm⁻¹
𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹² [cm⁻¹s] LorentzHeaviside
\[Z_0 = \mu_0\lambda c\alpha_L^2 = \frac{\lambda}{\varepsilon_0 c} = \lambda\alpha_L\sqrt{\frac{\mu_0}{\varepsilon_0}} = \frac{2h\alpha}{e^2} = 2R_K\alpha\]
MeasureSystems.vacuumimpedance
— Constant
vacuumimpedance(U::UnitSystem) = vacuumpermeability(U)*lightspeed(U)*rationalization(U)*lorentz(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻² [ħ²𝘤⁻³mₑ⁻²ϕ³λ²g₀²] Unified
Vacuum impedance of free space Z₀
is
magnitude ratio of electric to magnetic field
(Ω).
julia> vacuumimpedance(Metric) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.7303134617706 [Ω] Metric
julia> vacuumimpedance(Conventional) # Ω
α⋅RK90⋅2 = 376.730306964(58) [Ω] Conventional
julia> vacuumimpedance(CODATA) # Ω
α⋅RK⋅2 = 376.73031361(10) [Ω] CODATA
julia> vacuumimpedance(SI2019) # Ω
𝘩⋅𝘦⁻²α⋅2 = 376.730313667(58) [Ω] SI2019
julia> vacuumimpedance(International) # Ω
𝘤⋅Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 376.5439242192821 [Ω] International
julia> vacuumimpedance(InternationalMean) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷/1.00049 = 376.5458060168223 [Ω] InternationalMean
julia> 120π # 3e8*μ₀ # Ω
376.99111843077515
julia> vacuumimpedance(EMU) # abΩ
𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹ [cm⋅s⁻¹] EMU
julia> vacuumimpedance(ESU) # statΩ
𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰ [cm⁻¹s] ESU
julia> vacuumimpedance(HLU) # hlΩ
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> vacuumimpedance(IPS) # in⋅lb⋅s⋅C⁻²
𝘤⋅g₀⁻¹ft⁻¹lb⁻¹τ⋅2⁻⁴3⋅5⁻⁷ = 3334.344236337137 [lb⋅in⋅s⋅C⁻²] IPS
\[\mu_0 = \frac{1}{\varepsilon_0 (c\alpha_L)^2} = \frac{4\pi k_e}{\lambda (c\alpha_L)^2} = \frac{2h\alpha}{\lambda c(e\alpha_L)^2} = \frac{2R_K\alpha}{\lambda c\alpha_L^2}\]
MeasureSystems.vacuumpermeability
— Constant
vacuumpermeability(U::UnitSystem) = 𝟏/vacuumpermittivity(U)/(lightspeed(U)*lorentz(U))^2
permeability : [FT²Q⁻²R⁻¹C²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²R⁻¹C² [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Magnetic permeability in a classical vacuum
defined as μ₀
in SI units (H⋅m⁻¹,
kg⋅m²⋅C⁻²).
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
\[\varepsilon_0 = \frac{1}{\mu_0(c\alpha_L)^2} = \frac{\lambda}{4\pi k_e} = \frac{\lambda e^2}{2\alpha hc} = \frac{\lambda}{2R_K\alpha c}\]
MeasureSystems.vacuumpermittivity
— Constant
vacuumpermittivity(U::UnitSystem) = 𝟏/vacuumpermeability(U)/(lightspeed(U)*lorentz(U))^2
permittivity : [F⁻¹L⁻²Q²R], [F⁻¹L⁻²Q²], [M⁻¹L⁻³T²Q²], [L⁻²T²], [𝟙]
F⁻¹L⁻²Q²R [ħ⁻³𝘤⁴mₑ³ϕ⁻³λ⁻²g₀⁻³] Unified
Dielectric permittivity constant ε₀
of a classical vacuum (C²⋅N⁻¹⋅m⁻²).
julia> vacuumpermittivity(Metric) # F⋅m⁻¹
𝘤⁻²τ⁻¹2⁶5⁷ = 8.854187817620389×10⁻¹² [F⋅m⁻¹] Metric
julia> vacuumpermittivity(Conventional) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK90⁻¹2⁻¹ = 8.8541879703(14) × 10⁻¹² [F⋅m⁻¹] Conventional
julia> vacuumpermittivity(CODATA) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK⁻¹2⁻¹ = 8.8541878141(24) × 10⁻¹² [F⋅m⁻¹] CODATA
julia> vacuumpermittivity(SI2019) # F⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦²α⁻¹2⁻¹ = 8.8541878128(14) × 10⁻¹² [F⋅m⁻¹] SI2019
julia> vacuumpermittivity(International) # F⋅m⁻¹
𝘤⁻²Ωᵢₜ⋅τ⁻¹2⁶5⁷ = 8.85857064059011×10⁻¹² [F⋅m⁻¹] International
julia> vacuumpermittivity(EMU) # abF⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] EMU
julia> vacuumpermittivity(ESU) # statF⋅cm⁻¹
𝟏 = 1.0 [𝟙] ESU
julia> vacuumpermittivity(SI2019)/elementarycharge(SI2019) # 𝘦²⋅eV⁻¹⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦⋅α⁻¹2⁻¹ = 5.52634935805(85) × 10⁷ [kg⁻¹m⁻³s²C] SI2019
\[k_e = \frac{\lambda}{4\pi\varepsilon_0} = \frac{\mu_0\lambda (c\alpha_L)^2}{4\pi} = \frac{\alpha \hbar c}{e^2} = \frac{R_K\alpha c}{2\pi} = \frac{\alpha_B}{\alpha_L\mu_0\varepsilon_0} = k_mc^2\]
MeasureSystems.electrostatic
— Constant
electrostatic(U::UnitSystem) = rationalization(U)/𝟐/τ/vacuumpermittivity(U)
nonstandard : [FL²Q⁻²], [FL²Q⁻²], [ML³T⁻²Q⁻²], [L²T⁻²], [𝟙]
FL²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [ħ³𝘤⁻⁴mₑ⁻³ϕ⁴λ²g₀³] Unified
Electrostatic proportionality constant
kₑ
for the Coulomb's law force
(N⋅m²⋅C⁻²).
julia> electrostatic(Metric) # N⋅m²⋅C⁻²
𝘤²2⁻⁷5⁻⁷ = 8.987551787368176×10⁹ [m⋅F⁻¹] Metric
julia> electrostatic(CODATA) # N·m²⋅C⁻²
𝘤⋅α⋅RK⋅τ⁻¹ = 8.9875517909(25) × 10⁹ [m⋅F⁻¹] CODATA
julia> electrostatic(SI2019) # N·m²⋅C⁻²
𝘩⋅𝘤⋅𝘦⁻²α⋅τ⁻¹ = 8.9875517923(14) × 10⁹ [m⋅F⁻¹] SI2019
julia> electrostatic(Conventional) # N·m²⋅C⁻²
𝘤⋅α⋅RK90⋅τ⁻¹ = 8.9875516323(14) × 10⁹ [m⋅F⁻¹] Conventional
julia> electrostatic(International) # N·m²⋅C⁻²
𝘤²Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 8.983105150318768×10⁹ [m⋅F⁻¹] International
julia> electrostatic(EMU) # dyn⋅cm²⋅abC⁻²
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [erg⋅g⁻¹] EMU
julia> electrostatic(ESU) # dyn⋅cm²⋅statC⁻²
𝟏 = 1.0 [𝟙] ESU
julia> electrostatic(HLU) # dyn⋅cm²⋅hlC⁻²
τ⁻¹2⁻¹ = 0.07957747154594767 [𝟙] LorentzHeaviside
\[k_m = \alpha_L\alpha_B = \mu_0\alpha_L^2\frac{\lambda}{4\pi} = \frac{k_e}{c^2} = \frac{\alpha \hbar}{ce^2} = \frac{R_K\alpha}{2\pi c}\]
MeasureSystems.magnetostatic
— Constant
magnetostatic(U::UnitSystem) = lorentz(U)*biotsavart(U) # electrostatic(U)/lightspeed(U)^2
nonstandard : [FT²Q⁻²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [ħ⋅𝘤⁻²mₑ⁻¹ϕ²λ²g₀] Unified
Magnetic proportionality constant kₘ
for the Ampere's law force (N·s²⋅C⁻²).
julia> magnetostatic(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0×10⁻⁷ [H⋅m⁻¹] Metric
julia> magnetostatic(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> magnetostatic(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> magnetostatic(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> magnetostatic(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037726×10⁻⁸ [H⋅m⁻¹] International
julia> magnetostatic(EMU) # abH⋅m⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> magnetostatic(ESU) # statH⋅m⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> magnetostatic(HLU) # hlH⋅m⁻¹
𝘤⁻²τ⁻¹2⁻⁵5⁻⁴ = 8.85418781762039×10⁻²³ [cm⁻²s²] LorentzHeaviside
\[e = \sqrt{\frac{2h\alpha}{Z_0}} = \frac{2\alpha_L}{K_JR_K} = \sqrt{\frac{h}{R_K}} = \frac{hK_J}{2\alpha_L} = \frac{F}{N_A}\]
MeasureSystems.elementarycharge
— Constant
elementarycharge(U::UnitSystem) = √(𝟐*planck(U)*finestructure(U)/vacuumimpedance(U))
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(α¹ᐟ²τ¹ᐟ²2¹ᐟ² = 0.302822120872(23)) [ħ⁻³ᐟ²𝘤⁷ᐟ²mₑ⁵ᐟ²Kcd¹ᐟ²ϕ⁻²λ⁻¹g₀⁻²] Unified
Quantized elementary charge 𝘦
of a
proton or electron
2/(klitzing(U)*josephson(U))
(C).
julia> elementarycharge(SI2019) # C
𝘦 = 1.602176634×10⁻¹⁹ [C] SI2019
julia> elementarycharge(Metric) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60217663444(12) × 10⁻¹⁹ [C] Metric
julia> elementarycharge(CODATA) # C
RK⁻¹KJ⁻¹2 = 1.6021766207(99) × 10⁻¹⁹ [C] CODATA
julia> elementarycharge(Conventional) # C
RK90⁻¹KJ90⁻¹2 = 1.602176491612271×10⁻¹⁹ [C] Conventional
julia> elementarycharge(International) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60244090637(12) × 10⁻¹⁹ [C] International
julia> elementarycharge(EMU) # abC
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁵ᐟ²5⁵ᐟ² = 1.60217663444(12) × 10⁻²⁰ [g¹ᐟ²cm¹ᐟ²] EMU
julia> elementarycharge(ESU) # statC
𝘩¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁹ᐟ² = 4.80320471388(37) × 10⁻¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
julia> elementarycharge(Hartree) # 𝘦
𝟏 = 1.0 [𝘦] Hartree
\[F = eN_A = N_A\sqrt{\frac{2h\alpha}{Z_0}} = \frac{2N_A\alpha_L}{K_JR_K} = N_A\sqrt{\frac{h}{R_K}} = \frac{hK_JN_A}{2\alpha_L}\]
MeasureSystems.faraday
— Constant
faraday(U::UnitSystem) = elementarycharge(U)*avogadro(U)
nonstandard : [QN⁻¹], [QN⁻¹], [QN⁻¹], [M¹ᐟ²L¹ᐟ²N⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹N⁻¹]
QN⁻¹⋅(α¹ᐟ²μₑᵤ⋅τ¹ᐟ²2¹ᐟ² = 0.000166122131531(14)) [kB⁻¹ħ⁻²𝘤⁶μ₀¹ᐟ²mₑ⁷ᐟ²Kcd¹ᐟ²ϕ⁻⁵ᐟ²λ⁻¹ᐟ²αL⋅g₀⁻³] Unified
Electric charge per mole of electrons
𝔉
based on elementary charge
(C⋅mol⁻¹).
julia> faraday(SI2019) # C⋅mol⁻¹
NA⋅𝘦 = 96485.33212331001 [C⋅mol⁻¹] SI2019
julia> faraday(Metric) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96485.332183(37) [C⋅mol⁻¹] Metric
julia> faraday(CODATA) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ⋅2⁻⁵5⁻³ = 96485.33297(60) [C⋅mol⁻¹] CODATA
julia> faraday(Conventional) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ90⋅2⁻⁵5⁻³ = 96485.342448(30) [C⋅mol⁻¹] Conventional
julia> faraday(International) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96501.247011(37) [C⋅mol⁻¹] International
julia> faraday(InternationalMean) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ²⋅1.0001499490173342 = 96499.800064(37) [C⋅mol⁻¹] InternationalMean
julia> faraday(EMU) # abC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻³ᐟ²5⁻¹ᐟ² = 9648.5332183(37) [g¹ᐟ²cm¹ᐟ²mol⁻¹] EMU
julia> faraday(ESU) # statC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2¹ᐟ²5³ᐟ² = 2.8925574896(11) × 10¹⁴ [g¹ᐟ²cm³ᐟ²s⁻¹mol⁻¹] ESU
julia> faraday(Metric)/kilocalorie(Metric) # kcal⋅(V-g-e)⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ᐟ²2⁻¹¹ᐟ²3⁻²5⁻⁷ᐟ²43 = 23.0454706695(89) [kg⁻¹m⁻²s²C⋅mol⁻¹] Metric
julia> faraday(Metric)/3600 # A⋅h⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻⁹ᐟ²3⁻²5⁻³ᐟ² = 26.801481162(10) [C⋅mol⁻¹] Metric
\[G_0 = \frac{2e^2}{h} = \frac{4\alpha}{Z_0} = \frac{2}{R_K} = \frac{hK_J^2}{2\alpha_L^2} = \frac{2F^2}{hN_A^2}\]
MeasureSystems.conductancequantum
— Constant
conductancequantum(U::UnitSystem) = 𝟐*elementarycharge(U)^2/planck(U) # 2/klitzing(U)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(α⋅2² = 0.0291894102771(45)) [ħ⁻²𝘤³mₑ²ϕ⁻³λ⁻²g₀⁻²] Unified
Conductance quantum G₀
is a quantized
unit of electrical conductance (S).
julia> conductancequantum(SI2019) # S
𝘩⁻¹𝘦²2 = 7.748091729863649×10⁻⁵ [S] SI2019
julia> conductancequantum(Metric) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷ = 7.7480917341(12) × 10⁻⁵ [S] Metric
julia> conductancequantum(Conventional) # S
RK90⁻¹2 = 7.74809186773062×10⁻⁵ [S] Conventional
julia> conductancequantum(CODATA) # S
RK⁻¹2 = 7.7480917310(18) × 10⁻⁵ [S] CODATA
julia> conductancequantum(International) # S
𝘤⁻¹α⋅Ωᵢₜ⋅τ⁻¹2⁸5⁷ = 7.7519270395(12) × 10⁻⁵ [S] International
julia> conductancequantum(InternationalMean) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷⋅1.00049 = 7.7518882990(12) × 10⁻⁵ [S] InternationalMean
julia> conductancequantum(EMU) # abS
𝘤⁻¹α⋅τ⁻¹2⁻¹5⁻² = 7.7480917341(12) × 10⁻¹⁴ [cm⁻¹s] EMU
julia> conductancequantum(ESU) # statS
𝘤⋅α⋅τ⁻¹2³5² = 6.9636375713(11) × 10⁷ [cm⋅s⁻¹] ESU
\[R_K = \frac{h}{e^2} = \frac{Z_0}{2\alpha} = \frac{2}{G_0} = \frac{4\alpha_L^2}{hK_J^2} = h\frac{N_A^2}{F^2}\]
MeasureSystems.klitzing
— Constant
klitzing(U::UnitSystem) = planck(U)/elementarycharge(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(α⁻¹2⁻¹ = 68.517999542(10)) [ħ²𝘤⁻³mₑ⁻²ϕ³λ²g₀²] Unified
Quantized Hall resistance RK
(Ω).
julia> klitzing(SI2019) # Ω
𝘩⋅𝘦⁻² = 25812.80745930451 [Ω] SI2019
julia> klitzing(Metric) # Ω
𝘤⋅α⁻¹τ⋅2⁻⁷5⁻⁷ = 25812.8074452(40) [Ω] Metric
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> klitzing(International) # Ω
𝘤⋅α⁻¹Ωᵢₜ⁻¹τ⋅2⁻⁷5⁻⁷ = 25800.036427200(40) [Ω] International
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> klitzing(EMU) # abΩ
𝘤⋅α⁻¹τ⋅2²5² = 2.58128074452(40) × 10¹³ [cm⋅s⁻¹] EMU
julia> klitzing(ESU) # statΩ
𝘤⁻¹α⁻¹τ⋅2⁻²5⁻² = 2.87206216508(44) × 10⁻⁸ [cm⁻¹s] ESU
\[K_J = \frac{2e\alpha_L}{h} = \alpha_L\sqrt{\frac{8\alpha}{hZ_0}} = \alpha_L\sqrt{\frac{4}{hR_K}} = \frac{1}{\Phi_0} = \frac{2F\alpha_L}{hN_A}\]
MeasureSystems.josephson
— Constant
josephson(U::UnitSystem) = 𝟐*elementarycharge(U)*lorentz(U)/planck(U)
nonstandard : [F⁻¹L⁻¹T⁻¹QC⁻¹], [F⁻¹L⁻¹T⁻¹Q], [M⁻¹L⁻²TQ], [M⁻¹ᐟ²L⁻³ᐟ²T], [M⁻¹ᐟ²L⁻¹ᐟ²]
F⁻¹L⁻¹T⁻¹QC⁻¹⋅(α¹ᐟ²τ⁻¹ᐟ²2³ᐟ² = 0.0963912748286(74)) [ħ⁻¹ᐟ²𝘤⁻¹ᐟ²mₑ⁻¹ᐟ²Kcd⁻¹ᐟ²ϕ⁻¹] Unified
Josephson constant KJ
relating
potential difference to irradiation frequency
(Hz⋅V⁻¹).
julia> josephson(SI2019) # Hz⋅V⁻¹
𝘩⁻¹𝘦⋅2 = 4.8359784841698356×10¹⁴ [Hz⋅V⁻¹] SI2019
julia> josephson(Metric) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83597848549(37) × 10¹⁴ [Hz⋅V⁻¹] Metric
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> josephson(International) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Vᵢₜ⋅τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83757435839(37) × 10¹⁴ [Hz⋅V⁻¹] International
julia> josephson(EMU) # Hz⋅abV⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻⁷ᐟ²5⁻⁹ᐟ² = 4.83597848549(37) × 10⁶ [g⁻¹ᐟ²cm⁻³ᐟ²s] EMU
julia> josephson(ESU) # Hz⋅statV⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻³ᐟ²5⁻⁵ᐟ² = 1.44978987700(11) × 10¹⁷ [g⁻¹ᐟ²cm⁻¹ᐟ²] ESU
\[\Phi_0 = \frac{h}{2e\alpha_L} = \frac{1}{\alpha_L}\sqrt{\frac{hZ_0}{8\alpha}} = \frac{1}{\alpha_L}\sqrt{\frac{hR_K}{4}} = \frac{1}{K_J} = \frac{hN_A}{2F\alpha_L}\]
MeasureSystems.magneticfluxquantum
— Constant
magneticfluxquantum(U::UnitSystem) = planck(U)/𝟐/elementarycharge(U)/lorentz(U)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(α⁻¹ᐟ²τ¹ᐟ²2⁻³ᐟ² = 10.374382969600(79)) [ħ¹ᐟ²𝘤¹ᐟ²mₑ¹ᐟ²Kcd¹ᐟ²ϕ] Unified
Magnetic flux quantum Φ₀
is
𝟏/josephson(U)
(Wb).
julia> magneticfluxquantum(SI2019) # Wb
𝘩⋅𝘦⁻¹2⁻¹ = 2.0678338484619295×10⁻¹⁵ [Wb] SI2019
julia> magneticfluxquantum(Metric) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06783384790(16) × 10⁻¹⁵ [Wb] Metric
julia> magneticfluxquantum(Conventional) # Wb
KJ90⁻¹ = 2.0678336278962334×10⁻¹⁵ [Wb] Conventional
julia> magneticfluxquantum(International) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²Vᵢₜ⁻¹τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06715168784(16) × 10⁻¹⁵ [Wb] International
julia> magneticfluxquantum(InternationalMean) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ²/1.00034 = 2.06713102335(16) × 10⁻¹⁵ [Wb] InternationalMean
julia> magneticfluxquantum(EMU) # Mx
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁷ᐟ²5⁹ᐟ² = 2.06783384790(16) × 10⁻⁷ [Mx] EMU
julia> magneticfluxquantum(ESU) # statWb
𝘩¹ᐟ²𝘤⁻¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2³ᐟ²5⁵ᐟ² = 6.89755126494(53) × 10⁻¹⁸ [g¹ᐟ²cm¹ᐟ²] ESU
\[\mu_B = \frac{e\hbar\alpha_L}{2m_e} = \frac{\hbar\alpha_L^2}{m_eK_JR_K} = \frac{h^2K_J}{8\pi m_e} = \frac{\alpha_L\hbar F}{2m_e N_A} = \frac{ec\alpha^2\alpha_L}{8\pi g_0R_\infty}\]
MeasureSystems.magneton
— Constant
magneton(U::UnitSystem) = elementarycharge(U)*planckreduced(U)*lorentz(U)/2electronmass(U)
nonstandard : [FM⁻¹LTQA⁻¹C⁻¹], [L²T⁻¹Q], [L²T⁻¹Q], [M¹ᐟ²L⁵ᐟ²T⁻¹], [M¹ᐟ²L⁷ᐟ²T⁻²]
FM⁻¹LTQA⁻¹C⁻¹⋅(α¹ᐟ²τ¹ᐟ²2⁻¹ᐟ² = 0.151411060436(12)) [ħ⁻²𝘤⁴μ₀¹ᐟ²mₑ⁷ᐟ²Kcd¹ᐟ²ϕ⁻⁵ᐟ²λ¹ᐟ²αL⋅g₀⁻²] Unified
Bohr magneton μB
natural unit for
expressing magnetic moment of electron (J⋅T⁻¹).
julia> magneton(SI2019) # J⋅T⁻¹
𝘤⋅𝘦⋅R∞⁻¹α²τ⁻¹2⁻² = 9.2740100783(28) × 10⁻²⁴ [J⋅T⁻¹] SI2019
julia> magneton(Metric) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2740100808(36) × 10⁻²⁴ [J⋅T⁻¹] Metric
julia> magneton(CODATA) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK⁻¹KJ⁻¹τ⁻¹2⁻¹ = 9.274010001(58) × 10⁻²⁴ [J⋅T⁻¹] CODATA
julia> magneton(Conventional) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK90⁻¹KJ90⁻¹τ⁻¹2⁻¹ = 9.2740092541(28) × 10⁻²⁴ [J⋅T⁻¹] Conventional
julia> magneton(International) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2755397877(36) × 10⁻²⁴ [J⋅T⁻¹] International
julia> magneton(ESU) # statA⋅cm²
𝘩¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2¹³ᐟ²5¹⁷ᐟ² = 2.7802782776(11) × 10⁻¹⁰ [g¹ᐟ²cm⁷ᐟ²s⁻²] ESU
julia> magneton(SI2019)/elementarycharge(SI2019) # eV⋅T⁻¹
𝘤⋅R∞⁻¹α²τ⁻¹2⁻² = 5.7883818060(18) × 10⁻⁵ [m²s⁻¹] SI2019
julia> magneton(Hartree) # 𝘤⋅ħ⋅mₑ⁻¹
2⁻¹ = 0.5 [𝘦] Hartree
Astronomical Constants
MeasureSystems.eddington
— Constant
eddington(U::UnitSystem) = mass(𝟏,U,Cosmological)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²𝘤³R∞⁻¹α²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 2.804(21) × 10⁸²) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Approximate number of protons in the
Universe
as estimated by Eddington (kg
or lb).
julia> 𝟐^2^2^3/α # mₚ
α⁻¹2²⁵⁶ = 1.58676846347(24) × 10⁷⁹
julia> eddington(QCD) # mₚ
𝘩⁻²𝘤³R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 1.527(11) × 10⁷⁹ [mₚ] QCD
julia> eddington(Metric) # kg
𝘩⁻¹𝘤²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁹3⁷ᐟ²5⁶ = 2.555(19) × 10⁵² [kg] Metric
julia> eddington(IAU) # M☉
𝘤³ΩΛ⁻¹ᐟ²H0⁻¹au⁻²kG⁻²τ⁻⁷ᐟ²2³⁷3³⁵ᐟ²5¹⁶ = 1.2847(95) × 10²² [M☉] IAU☉
julia> eddington(Cosmological)
𝟏 = 1.0 [M] Cosmological
MeasureSystems.solarmass
— Constant
solarmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 2.182814(48) × 10⁶⁰) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Solar mass
estimated from
gravitational constant estimates (kg or slug).
julia> solarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰ [kg] Metric
julia> solarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹au³ft⋅lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.362493(30) × 10²⁹ [slug] British
julia> solarmass(English) # lb
𝘩⁻¹𝘤⁻¹au³lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 4.383692(97) × 10³⁰ [lbm] English
julia> solarmass(IAUE) # ME
au³kG²GME⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 332946.04409(67) [ME] IAUE
julia> solarmass(IAUJ) # MJ
au³kG²GMJ⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1047.565484(74) [MJ] IAUJ
julia> solarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.188798(26) × 10⁵⁷ [mₚ] QCD
julia> solarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.197448(26) × 10⁵⁷ [𝟙] Metric
MeasureSystems.jupitermass
— Constant
jupitermass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GMJ⋅τ⋅2⁻¹ = 2.083702(46) × 10⁵⁷) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Jupiter mass
estimated from
gravitational constant estimates (kg or slug).
julia> jupitermass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷ [kg] Metric
julia> jupitermass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GMJ⋅τ = 1.300628(29) × 10²⁶ [slug] British
julia> jupitermass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GMJ⋅τ = 4.184647(92) × 10²⁷ [lbm] English
julia> jupitermass(IAU) # M☉
au⁻³kG⁻²GMJ⋅τ⁻²2²⁸3¹⁴5¹⁰ = 0.000954594262(68) [M☉] IAU☉
julia> jupitermass(IAUE) # ME
GME⁻¹GMJ = 317.828383(23) [ME] IAUE
julia> jupitermass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GMJ⋅τ⋅2⁻¹ = 1.134820(25) × 10⁵⁴ [mₚ] QCD
julia> jupitermass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GMJ⋅τ⋅2⁻¹ = 1.143077(25) × 10⁵⁴ [𝟙] Metric
MeasureSystems.earthmass
— Constant
earthmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GME⋅τ⋅2⁻¹ = 6.55606(14) × 10⁵⁴) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Earth mass
estimated from
gravitational constant estimates (kg or slug).
julia> earthmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴ [kg] Metric
julia> earthmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ = 4.092234(90) × 10²³ [slug] British
julia> earthmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ = 1.316637(29) × 10²⁵ [lbm] English
julia> earthmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰ = 3.0034896577(60) × 10⁻⁶ [M☉] IAU☉
julia> earthmass(IAUJ) # MJ
GME⋅GMJ⁻¹ = 0.00314635210(22) [MJ] IAUJ
julia> earthmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹ = 3.570542(79) × 10⁵¹ [mₚ] QCD
julia> earthmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹ = 3.596523(79) × 10⁵¹ [𝟙] Metric
MeasureSystems.lunarmass
— Constant
lunarmass(U::UnitSystem) = earthmass(U)/μE☾
mass : [M], [FL⁻¹T²], [M], [M], [M]
M/81.300568 ± 3.0e-6 [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Lunar mass
estimated from
μE☾
Earth-Moon mass ratio (kg or
slug).
julia> lunarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ/81.3005680(30) = 7.34579(16) × 10²² [kg] Metric
julia> lunarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ/81.3005680(30) = 5.03346(11) × 10²¹ [slug] British
julia> lunarmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ/81.3005680(30) = 1.619469(36) × 10²³ [lbm] English
julia> lunarmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰/81.3005680(30) = 3.69430341(14) × 10⁻⁸ [M☉] IAU☉
julia> lunarmass(IAUE) # ME
𝟏/81.3005680(30) = 0.01230003707(45) [ME] IAUE
julia> lunarmass(IAUJ) # MJ
GME⋅GMJ⁻¹/81.3005680(30) = 3.87002474(31) × 10⁻⁵ [MJ] IAUJ
julia> lunarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.391780(97) × 10⁴⁹ [mₚ] QCD
julia> lunarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.423736(98) × 10⁴⁹ [𝟙] Metric
MeasureSystems.gravity
— Constant
gravity(U::UnitSystem) = # mass*acceleration/force
gravityforce : [F⁻¹MLT⁻²], [𝟙], [𝟙], [𝟙], [𝟙]
F⁻¹MLT⁻² [αL⁻¹] Unified
Gravitational force reference used in technical engineering units (kg⋅m⋅N⁻¹⋅s⁻²).
julia> gravity(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> gravity(Engineering) # m⋅kg⋅N⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] Engineering
julia> gravity(English) # ft⋅lbm⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] English
MeasureSystems.earthradius
— Constant
earthradius(U::UnitSystem) = sqrt(earthmass(U)*gravitation(U)/gforce(U))
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2 = 1.6509810466(17) × 10¹⁹) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Approximate length
of standard Earth
two-body radius consistent with units (m or ft).
julia> earthradius(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²2⁻³5⁻³ = 6375.4163237(64) [km] KKH
julia> earthradius(Nautical) # nm
τ⁻¹2⁵3³5² = 3437.7467707849396 [nm] Nautical
julia> earthradius(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ² = 4.2617025856(43) × 10⁻⁵ [au] IAU☉
MeasureSystems.greatcircle
— Constant
greatcircle(U::UnitSystem) = τ*earthradius(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2 = 1.0373419854(11) × 10²⁰) [ħ⁻⁵ᐟ²𝘤¹¹ᐟ²μ₀¹ᐟ²mₑ⁴Kcd⋅ϕ⁻⁵ᐟ²λ¹ᐟ²g₀⁻³] Unified
Approximate length
of standard Earth
two-body circle consistent with units (m or ft).
julia> greatcircle(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻³5⁻³ = 40057.922172(40) [km] KKH
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> greatcircle(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ²τ = 0.00026777067070(27) [au] IAU☉
MeasureSystems.gaussianmonth
— Constant
gaussianmonth(U::UnitSystem) = τ*sqrt(lunardistance(U)^3/earthmass(U)/gravitation(U))
time : [T], [T], [T], [T], [T]
T⋅1.6987431854323947e6 [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by
lunardistance
and earthmass
for neglible mass
satellite (s).
julia> gaussianmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.6987431854323947×10⁶ = 2.3718343493(24) × 10⁶ [s] Metric
julia> gaussianmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 658.84287479(66) [h] MPH
julia> gaussianmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 27.451786450(28) [D] IAU☉
MeasureSystems.siderealmonth
— Constant
siderealmonth(U::UnitSystem) = gaussianmonth(U)/√(𝟏+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T⋅1.68839128266e6 ± 0.00038 [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by standard
lunardistance
and the Earth-Moon system
mass
(s).
julia> siderealmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.68839128266(38) × 10⁶ = 2.3573807233(24) × 10⁶ [s] Metric
julia> siderealmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.68839128266(38) × 10⁶ = 654.82797870(67) [h] MPH
julia> siderealmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.68839128266(38) × 10⁶ = 27.284499112(28) [D] IAU☉
MeasureSystems.synodicmonth
— Constant
synodicmonth(U::UnitSystem) = 𝟏/(𝟏/siderealmonth(U)-𝟏/siderealyear(U))
time : [T], [T], [T], [T], [T]
T⋅29.487179323 ± 3.3e-8 [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by
siderealmonth
and
siderealyear
of Sun-Earth-Moon system
(s).
julia> synodicmonth(Metric) # s
2⁷3³5²⋅29.487179323(33) = 2.5476922935(28) × 10⁶ [s] Metric
julia> synodicmonth(MPH) # h
2³3⋅29.487179323(33) = 707.69230376(79) [h] MPH
julia> synodicmonth(IAU) # D
29.487179323(33) = 29.487179323(33) [D] IAU☉
MeasureSystems.gaussianyear
— Constant
gaussianyear(U::UnitSystem) = turn(U)/gaussgravitation(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²kG⁻¹τ⋅2¹⁵3⁷5⁵ = 2.45000183355(75) × 10²⁸) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by
gaussgravitation
constant
kG
for neglible mass
satellite (s).
julia> gaussianyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵ = 3.155819598840209×10⁷ [s] Metric
julia> gaussianyear(MPH) # h
kG⁻¹2¹⁰3⁵5³ = 8766.165552333914 [h] MPH
julia> gaussianyear(IAU) # D
kG⁻¹2⁷3⁴5³ = 365.2568980139131 [D] IAU☉
MeasureSystems.siderealyear
— Constant
siderealyear(U::UnitSystem) = gaussianyear(U)/√(𝟏+earthmass(IAU)+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T/1.0000015202151904 ± 3.1e-15 [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by
gaussgravitation
constant
kG
and Earth-Moon system
mass
(s).
julia> siderealyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵/1.0000015202151904(31) = 3.1558148013226100(98) × 10⁷ [s] Metric
julia> siderealyear(MPH) # h
kG⁻¹2¹⁰3⁵5³/1.0000015202151904(31) = 8766.152225896140(27) [h] MPH
julia> siderealyear(IAU) # D
kG⁻¹2⁷3⁴5³/1.0000015202151904(31) = 365.2563427456725(11) [D] IAU☉
MeasureSystems.jovianyear
— Constant
jovianyear(U::UnitSystem) = τ*day(U)*√(jupiterdistance(U)^3/solarmass(U)/gravitation(U))/√(𝟏+jupitermass(IAU))
time : [T], [T], [T], [T], [T]
T⋅1.321238687229e8 ± 0.0045 [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Orbit time
defined by
jupiterdistance
and the Sun-Jupiter
system mass
(s).
julia> jovianyear(Metric) # s
au⁻³ᐟ²kG⁻¹2²³3¹⁷ᐟ²5¹⁴⋅1.321238687229(45) × 10⁸ = 3.74444292140(17) × 10⁸ [s] Metric
julia> jovianyear(MPH) # h
au⁻³ᐟ²kG⁻¹2¹⁹3¹³ᐟ²5¹²⋅1.321238687229(45) × 10⁸ = 104012.3033722(47) [h] MPH
julia> jovianyear(IAU) # D
au⁻³ᐟ²kG⁻¹2¹⁶3¹¹ᐟ²5¹²⋅1.321238687229(45) × 10⁸ = 4333.84597384(20) [D] IAU☉
MeasureSystems.radarmile
— Constant
radarmile(U::UnitSystem) = 𝟐*nauticalmile(U)/lightspeed(U)
time : [T], [T], [T], [T], [T]
T⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻³3⁻³5⁻² = 9.605018384(10) × 10¹⁵) [ħ⁻⁷ᐟ²𝘤¹³ᐟ²μ₀¹ᐟ²mₑ⁵Kcd⋅ϕ⁻⁷ᐟ²λ¹ᐟ²g₀⁻⁴] Unified
Unit of time
delay from a two-way
nauticalmile
radar return (s).
julia> radarmile(Metric)
𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁴3⁻³5⁻² = 1.2372115338(12) × 10⁻⁵ [s] Metric
MeasureSystems.hubble
— Constant
hubble(U::UnitSystem) = time(U,Hubble)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹) [ħ⁷ᐟ²𝘤⁻¹³ᐟ²μ₀⁻¹ᐟ²mₑ⁻⁵Kcd⁻¹ϕ⁷ᐟ²λ⁻¹ᐟ²g₀⁴] Unified
Hubble universe expansion frequency parameter.
julia> hubble(Metric)
H0⋅au⁻¹τ⋅2⁻¹⁰3⁻⁴5⁻⁶ = 2.193(14) × 10⁻¹⁸ [Hz] Metric
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> 𝟏/hubble(Metric)/year(Metric)
H0⁻¹aⱼ⁻¹au⋅τ⁻¹2³3⋅5⁴ = 1.4452(90) × 10¹⁰ [𝟙] Metric
MeasureSystems.cosmological
— Constant
cosmological(U::UnitSystem) = 𝟑*darkenergydensity(U)*(hubble(U)/lightspeed(U))^2
fuelefficiency : [L⁻²], [L⁻²], [L⁻²], [L⁻²], [L⁻²]
L⁻²⋅(𝘤⁻²R∞⁻²α⁴ΩΛ⋅H0²au⁻²2⁻²²3⁻⁷5⁻¹² = 1.649(24) × 10⁻⁷⁷) [ħ⁵𝘤⁻¹¹μ₀⁻¹mₑ⁻⁸Kcd⁻²ϕ⁵λ⁻¹g₀⁶] Unified
Cosmological constant from Einstein's controversial theory expanded on by Hubble.
julia> cosmological(Metric)
𝘤⁻²ΩΛ⋅H0²au⁻²τ²2⁻²⁰3⁻⁷5⁻¹² = 1.106(16) × 10⁻⁵² [m⁻²] Metric
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] Hubble
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] Cosmological
Constants Index
-
MeasureSystems.Universe
-
MeasureSystems.avogadro
-
MeasureSystems.biotsavart
-
MeasureSystems.bohr
-
MeasureSystems.boltzmann
-
MeasureSystems.conductancequantum
-
MeasureSystems.cosmological
-
MeasureSystems.dalton
-
MeasureSystems.earthmass
-
MeasureSystems.earthradius
-
MeasureSystems.eddington
-
MeasureSystems.einstein
-
MeasureSystems.electronmass
-
MeasureSystems.electronradius
-
MeasureSystems.electrostatic
-
MeasureSystems.elementarycharge
-
MeasureSystems.faraday
-
MeasureSystems.gaussgravitation
-
MeasureSystems.gaussianmonth
-
MeasureSystems.gaussianyear
-
MeasureSystems.gravitation
-
MeasureSystems.gravity
-
MeasureSystems.greatcircle
-
MeasureSystems.hartree
-
MeasureSystems.hubble
-
MeasureSystems.hyperfine
-
MeasureSystems.josephson
-
MeasureSystems.jovianyear
-
MeasureSystems.jupitermass
-
MeasureSystems.klitzing
-
MeasureSystems.lightspeed
-
MeasureSystems.lorentz
-
MeasureSystems.luminousefficacy
-
MeasureSystems.lunarmass
-
MeasureSystems.magneticfluxquantum
-
MeasureSystems.magneton
-
MeasureSystems.magnetostatic
-
MeasureSystems.molargas
-
MeasureSystems.molarmass
-
MeasureSystems.planck
-
MeasureSystems.planckmass
-
MeasureSystems.planckreduced
-
MeasureSystems.protonmass
-
MeasureSystems.radarmile
-
MeasureSystems.radiationdensity
-
MeasureSystems.rationalization
-
MeasureSystems.rydberg
-
MeasureSystems.siderealmonth
-
MeasureSystems.siderealyear
-
MeasureSystems.solarmass
-
MeasureSystems.stefan
-
MeasureSystems.synodicmonth
-
MeasureSystems.vacuumimpedance
-
MeasureSystems.vacuumpermeability
-
MeasureSystems.vacuumpermittivity
-
MeasureSystems.wienfrequency
-
MeasureSystems.wienwavelength
-
MeasureSystems.loschmidt
-
MeasureSystems.mechanicalheat
-
MeasureSystems.sackurtetrode
-
MeasureSystems.British
-
MeasureSystems.CODATA
-
MeasureSystems.Conventional
-
MeasureSystems.Cosmological
-
MeasureSystems.CosmologicalQuantum
-
MeasureSystems.EMU
-
MeasureSystems.ESU
-
MeasureSystems.Electronic
-
MeasureSystems.Engineering
-
MeasureSystems.English
-
MeasureSystems.FFF
-
MeasureSystems.FPS
-
MeasureSystems.Gauss
-
MeasureSystems.Gravitational
-
MeasureSystems.Hartree
-
MeasureSystems.Hubble
-
MeasureSystems.IAU
-
MeasureSystems.IAUE
-
MeasureSystems.IAUJ
-
MeasureSystems.IPS
-
MeasureSystems.International
-
MeasureSystems.InternationalMean
-
MeasureSystems.KKH
-
MeasureSystems.LorentzHeaviside
-
MeasureSystems.MPH
-
MeasureSystems.MTS
-
MeasureSystems.Meridian
-
MeasureSystems.Metric
-
MeasureSystems.Natural
-
MeasureSystems.NaturalGauss
-
MeasureSystems.Nautical
-
MeasureSystems.Planck
-
MeasureSystems.PlanckGauss
-
MeasureSystems.QCD
-
MeasureSystems.QCDGauss
-
MeasureSystems.QCDoriginal
-
MeasureSystems.Rydberg
-
MeasureSystems.SI1976
-
MeasureSystems.SI2019
-
MeasureSystems.Schrodinger
-
MeasureSystems.Stoney
-
MeasureSystems.Survey