abmho unit
data derived with UnitSystems.jl
\[\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}\]
\[\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | Metric |
$9.9999999945(15) \times 10^{8}$ $\left[\text{S}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha^{-1}\tau\cdot 2^{2}5^{2}$ | SI2019 |
$1.0 \times 10^{9}$ $\left[\text{kg}^{-1}\text{m}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $2^{9}5^{9}$ | SI1976 |
$9.9999999960(28) \times 10^{8}$ $\left[\text{S}\right]$ | $\text{c}\cdot \alpha^{-1}\text{R}_\text{K}^{-1}\tau\cdot 2^{2}5^{2}$ | CODATA |
$1.00000001725(15) \times 10^{9}$ $\left[\text{S}\right]$ | $\text{c}\cdot \alpha^{-1}{\text{R}_\text{K}^{90}}^{-1}\tau\cdot 2^{2}5^{2}$ | Conventional |
$1.0004949999999999 \times 10^{9}$ $\left[\text{S}\right]$ | $\Omega_\text{it}\cdot 2^{9}5^{9}$ | International |
$1.0004900000000001 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}1.00049$ | InternationalMean |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricTurn |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricSpatian |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricGradian |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricDegree |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricArcminute |
$1.0 \times 10^{9}$ $\left[\text{S}\right]$ | $2^{9}5^{9}$ | MetricArcsecond |
$9.80665 \times 10^{9}$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot 2^{9}5^{9}$ | Engineering |
$9.80665 \times 10^{9}$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot 2^{9}5^{9}$ | Gravitational |
$1.0 \times 10^{12}$ $\left[\text{t}^{-1}\text{m}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $2^{12}5^{12}$ | MTS |
$1.0$ $\left[\text{cm}^{-1}\text{s}\right]$ | $1$ | EMU |
$8.987551787368175 \times 10^{20}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}^{2}2^{4}5^{4}$ | ESU |
$8.987551787368175 \times 10^{20}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}^{2}2^{4}5^{4}$ | Gauss |
$1.129409066758147 \times 10^{22}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}^{2}\tau\cdot 2^{5}5^{4}$ | LorentzHeaviside |
$4.214011009380481 \times 10^{7}$ $\left[\text{lb}^{-1}\text{ft}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $\text{ft}^{2}\text{lb}\cdot 2^{9}5^{9}$ | FPS |
$1.129848290276167 \times 10^{8}$ $\left[\text{lb}^{-1}\text{in}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{7}3^{-1}5^{9}$ | IPS |
$1.3558179483314004 \times 10^{9}$ $\left[\text{lb}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{9}5^{9}$ | British |
$1.3558179483314004 \times 10^{9}$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{9}5^{9}$ | English |
$1.3558206599727204 \times 10^{9}$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{g}_0\cdot \text{ft}_\text{US}\cdot \text{lb}\cdot 2^{9}5^{9}$ | Survey |
$3.2633301256642444 \times 10^{11}$ $\left[\text{lb}^{-1}\text{mi}^{-2}\text{h}\cdot \text{C}^{2}\right]$ | $\text{ft}^{2}\text{lb}\cdot 2^{15}5^{9}11^{2}$ | MPH |
$2.777777777777778 \times 10^{11}$ $\left[\text{kg}^{-1}\text{km}^{-2}\text{h}\cdot \text{C}^{2}\right]$ | $2^{11}3^{-2}5^{13}$ | KKH |
$9.5397810386(96) \times 10^{11}$ $\left[\text{keg}^{-1}\text{nm}^{-2}\text{h}\cdot \text{eC}^{2}\right]$ | $\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2^{4}3^{-8}5^{10}$ | Nautical |
$1.0014480543(10) \times 10^{9}$ $\left[\text{eS}\right]$ | $\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 5^{2}$ | Meridian |
$5.15042(11) \times 10^{56}$ $\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-26}3^{-17}5^{-3}$ | IAU☉ |
$1.021369(23) \times 10^{46}$ $\left[\text{ME}^{-1}\text{LD}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot \tau\cdot 2^{8}3^{3}5^{13}202692169$ | IAUE |
$1.331388(29) \times 10^{55}$ $\left[\text{MJ}^{-1}\text{JD}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot \tau\cdot 2^{14}3^{-1}5^{19}67336617049$ | IAUJ |
$2.99792458 \times 10^{10}$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | Hubble |
$2.99792458 \times 10^{10}$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | Cosmological |
$2.99792458 \times 10^{10}$ $\left[\text{e}_\text{n}^2\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | CosmologicalQuantum |
$3.767303134617706 \times 10^{11}$ $\left[\mathbb{1}\right]$ | $\text{c}\cdot \tau\cdot 2^{3}5^{2}$ | Planck |
$2.99792458 \times 10^{10}$ $\left[\text{e}_\text{n}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | PlanckGauss |
$2.99792458 \times 10^{10}$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | Stoney |
$4.10823589999(63) \times 10^{12}$ $\left[\text{e}^{2}\right]$ | $\text{c}\cdot \alpha^{-1}2^{2}5^{2}$ | Hartree |
$8.2164718000(13) \times 10^{12}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ | $\text{c}\cdot \alpha^{-1}2^{3}5^{2}$ | Rydberg |
$4.10823589999(63) \times 10^{12}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ | $\text{c}\cdot \alpha^{-1}2^{2}5^{2}$ | Schrodinger |
$2.99792458 \times 10^{10}$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | Electronic |
$3.767303134617706 \times 10^{11}$ $\left[\mathbb{1}\right]$ | $\text{c}\cdot \tau\cdot 2^{3}5^{2}$ | Natural |
$2.99792458 \times 10^{10}$ $\left[\text{e}_\text{n}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | NaturalGauss |
$3.767303134617706 \times 10^{11}$ $\left[\mathbb{1}\right]$ | $\text{c}\cdot \tau\cdot 2^{3}5^{2}$ | QCD |
$2.99792458 \times 10^{10}$ $\left[\text{e}_\text{n}^{2}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | QCDGauss |
$4.10823589999(63) \times 10^{12}$ $\left[\text{e}^{2}\right]$ | $\text{c}\cdot \alpha^{-1}2^{2}5^{2}$ | QCDoriginal |