Boltzmann unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}\cdot \Theta^{-1}\]
\[\left[\text{k}_\text{B}\right]\]
\[k_B = \frac{R_u}{N_A} = m_u\frac{R_u}{M_u} = \frac{m_e R_u}{\mu_{eu}M_u} = \frac{2R_uR_\infty h g_0}{M_u \mu_{eu}c\alpha^2}\]
Quantity | Product | UnitSystem |
---|---|---|
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | Metric |
$1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}$ | SI2019 |
$1.38062531722(43) \times 10^{-23}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-2}\text{K}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}8.31432$ | SI1976 |
$1.38064851(80) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}\text{R}_\text{u}\cdot 2^{6}5^{3}$ | CODATA |
$1.38064872956(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}{\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{6}5^{3}$ | Conventional |
$1.38042119247(42) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2^{4}5^{3}$ | International |
$1.38038669501(42) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}/1.0001900224889804$ | InternationalMean |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricTurn |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricSpatian |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricGradian |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricDegree |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricArcminute |
$1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | MetricArcsecond |
$1.40787016925(43) \times 10^{-24}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}2^{4}5^{3}$ | Engineering |
$1.40787016925(43) \times 10^{-24}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}2^{4}5^{3}$ | Gravitational |
$1.38064899953(43) \times 10^{-26}$ $\left[\text{t}\cdot \text{m}^{2}\text{s}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MTS |
$1.38064899953(43) \times 10^{-16}$ $\left[\text{erg} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{11}5^{10}$ | EMU |
$1.38064899953(43) \times 10^{-16}$ $\left[\text{erg} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{11}5^{10}$ | ESU |
$1.38064899953(43) \times 10^{-16}$ $\left[\text{erg} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{11}5^{10}$ | Gauss |
$1.38064899953(43) \times 10^{-16}$ $\left[\text{erg} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{11}5^{10}$ | LorentzHeaviside |
$1.82018324169(56) \times 10^{-22}$ $\left[\text{lb}\cdot \text{ft}^{2}\text{s}^{-2}{^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{ft}^{-2}\text{lb}^{-1}2^{4}3^{-2}5^{4}$ | FPS |
$6.7887629566(21) \times 10^{-23}$ $\left[\text{lb}\cdot \text{in}\cdot {^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2^{6}3^{-1}5^{4}$ | IPS |
$5.6573024638(17) \times 10^{-24}$ $\left[\text{lb}\cdot \text{ft}\cdot {^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2^{4}3^{-2}5^{4}$ | British |
$5.6573024638(17) \times 10^{-24}$ $\left[\text{lbf}\cdot \text{ft}\cdot {^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2^{4}3^{-2}5^{4}$ | English |
$5.6572911492(17) \times 10^{-24}$ $\left[\text{lbf}\cdot \text{ft}\cdot {^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}_\text{US}^{-1}\text{lb}^{-1}2^{4}3^{-2}5^{4}$ | Survey |
$8.4615956484(26) \times 10^{-23}$ $\left[\text{lb}\cdot \text{mi}^{2}\text{h}^{-2}{^\circ}\text{R}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{ft}^{-2}\text{lb}^{-1}2^{2}5^{6}11^{-2}$ | MPH |
$1.78932110338(55) \times 10^{-22}$ $\left[\text{kg}\cdot \text{km}^{2}\text{h}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{6}3^{4}5$ | KKH |
$5.180046618(26) \times 10^{-23}$ $\left[\text{keg}\cdot \text{nm}^{2}\text{h}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{49}3^{10}5^{32}$ | Nautical |
$1.3706960050(69) \times 10^{-23}$ $\left[\text{eJ} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{49}5^{38}$ | Meridian |
$2.316083(51) \times 10^{-66}$ $\left[\text{M}_\odot\cdot \text{au}^{2}\text{D}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{46}3^{20}5^{17}$ | IAU☉ |
$1.167923(26) \times 10^{-55}$ $\left[\text{ME}\cdot \text{LD}^{2}\text{D}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{12}5/202692169$ | IAUE |
$8.95968(20) \times 10^{-65}$ $\left[\text{MJ}\cdot \text{JD}^{2}\text{D}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{6}3^{4}5^{-5}/67336617049$ | IAUJ |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hubble |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Cosmological |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | CosmologicalQuantum |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Planck |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | PlanckGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Stoney |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hartree |
$1.0$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $1$ | Rydberg |
$1.0$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $1$ | Schrodinger |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | NaturalGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCD |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDoriginal |