conductance quantum unit
data derived with UnitSystems.jl
\[\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}\]
\[\left[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\right]\]
\[G_0 = \frac{2e^2}{h} = \frac{4\alpha}{Z_0} = \frac{2}{R_K} = \frac{hK_J^2}{2\alpha_L^2} = \frac{2F^2}{hN_A^2}\]
Quantity | Product | UnitSystem |
---|---|---|
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | Metric |
$7.748091729863649 \times 10^{-5}$ $\left[\text{S}\right]$ | $\hbar^{-1}\text{e}^{2}2$ | SI2019 |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{kg}^{-1}\text{m}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | SI1976 |
$7.7480917310(18) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{R}_\text{K}^{-1}2$ | CODATA |
$7.74809186773062 \times 10^{-5}$ $\left[\text{S}\right]$ | ${\text{R}_\text{K}^{90}}^{-1}2$ | Conventional |
$7.7519270395(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \Omega_\text{it}\cdot \tau^{-1}2^{8}5^{7}$ | International |
$7.7518882990(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}1.00049$ | InternationalMean |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricTurn |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricSpatian |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricGradian |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricDegree |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricArcminute |
$7.7480917341(12) \times 10^{-5}$ $\left[\text{S}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{8}5^{7}$ | MetricArcsecond |
$0.00075982823804(12)$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \tau^{-1}2^{8}5^{7}$ | Engineering |
$0.00075982823804(12)$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \tau^{-1}2^{8}5^{7}$ | Gravitational |
$0.077480917341(12)$ $\left[\text{t}^{-1}\text{m}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{11}5^{10}$ | MTS |
$7.7480917341(12) \times 10^{-14}$ $\left[\text{cm}^{-1}\text{s}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{-1}5^{-2}$ | EMU |
$6.9636375713(11) \times 10^{7}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \alpha\cdot \tau^{-1}2^{3}5^{2}$ | ESU |
$6.9636375713(11) \times 10^{7}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \alpha\cdot \tau^{-1}2^{3}5^{2}$ | Gauss |
$8.7507650546(13) \times 10^{8}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \alpha\cdot 2^{4}5^{2}$ | LorentzHeaviside |
$3.26505438691(50) \times 10^{-6}$ $\left[\text{lb}^{-1}\text{ft}^{-2}\text{s}\cdot \text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{ft}^{2}\text{lb}\cdot \tau^{-1}2^{8}5^{7}$ | FPS |
$8.7541681987(13) \times 10^{-6}$ $\left[\text{lb}^{-1}\text{in}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{6}3^{-1}5^{7}$ | IPS |
$0.000105050018384(16)$ $\left[\text{lb}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{8}5^{7}$ | British |
$0.000105050018384(16)$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{8}5^{7}$ | English |
$0.000105050228484(16)$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{s}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0\cdot \text{ft}_\text{US}\cdot \text{lb}\cdot \tau^{-1}2^{8}5^{7}$ | Survey |
$0.0252845811723(39)$ $\left[\text{lb}^{-1}\text{mi}^{-2}\text{h}\cdot \text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{ft}^{2}\text{lb}\cdot \tau^{-1}2^{14}5^{7}11^{2}$ | MPH |
$0.0215224770391(33)$ $\left[\text{kg}^{-1}\text{km}^{-2}\text{h}\cdot \text{C}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \tau^{-1}2^{10}3^{-2}5^{11}$ | KKH |
$0.073915098610(75)$ $\left[\text{keg}^{-1}\text{nm}^{-2}\text{h}\cdot \text{eC}^{2}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}2^{3}3^{-8}5^{8}$ | Nautical |
$7.7593113917(79) \times 10^{-5}$ $\left[\text{eS}\right]$ | $\text{c}^{-1}\alpha\cdot \text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}2^{-1}$ | Meridian |
$3.990595(88) \times 10^{43}$ $\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-2}\alpha\cdot \text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{2}2^{-27}3^{-17}5^{-5}$ | IAU☉ |
$7.91366(17) \times 10^{32}$ $\left[\text{ME}^{-1}\text{LD}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-2}\alpha\cdot \text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot 2^{7}3^{3}5^{11}202692169$ | IAUE |
$1.031572(23) \times 10^{42}$ $\left[\text{MJ}^{-1}\text{JD}^{-2}\text{D}\cdot \text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-2}\alpha\cdot \text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot 2^{13}3^{-1}5^{17}67336617049$ | IAUJ |
$0.00232281946577(36)$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | Hubble |
$0.00232281946577(36)$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | Cosmological |
$0.00232281946577(36)$ $\left[\text{e}_\text{n}^2\right]$ | $\alpha\cdot \tau^{-1}2$ | CosmologicalQuantum |
$0.0291894102771(45)$ $\left[\mathbb{1}\right]$ | $\alpha\cdot 2^{2}$ | Planck |
$0.00232281946577(36)$ $\left[\text{e}_\text{n}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | PlanckGauss |
$0.00232281946577(36)$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | Stoney |
$0.3183098861837907$ $\left[\text{e}^{2}\right]$ | $\tau^{-1}2$ | Hartree |
$0.6366197723675814$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ | $\tau^{-1}2^{2}$ | Rydberg |
$0.3183098861837907$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ | $\tau^{-1}2$ | Schrodinger |
$0.00232281946577(36)$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | Electronic |
$0.0291894102771(45)$ $\left[\mathbb{1}\right]$ | $\alpha\cdot 2^{2}$ | Natural |
$0.00232281946577(36)$ $\left[\text{e}_\text{n}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | NaturalGauss |
$0.0291894102771(45)$ $\left[\mathbb{1}\right]$ | $\alpha\cdot 2^{2}$ | QCD |
$0.00232281946577(36)$ $\left[\text{e}_\text{n}^{2}\right]$ | $\alpha\cdot \tau^{-1}2$ | QCDGauss |
$0.3183098861837907$ $\left[\text{e}^{2}\right]$ | $\tau^{-1}2$ | QCDoriginal |