Dalton unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
\[m_u = \frac{M_u}{N_A} = \frac{m_e}{\mu_{eu}} = \frac{m_p}{\mu_{pu}} = \frac{2R_\infty hg_0}{\mu_{eu}c\alpha^2} = \frac{m_P}{\mu_{eu}}\sqrt{\alpha_G}\]
Quantity | Product | UnitSystem |
---|---|---|
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | Metric |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | SI2019 |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | SI1976 |
$1.660539039(21) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{3}$ | CODATA |
$1.66053874191(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}{\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{3}$ | Conventional |
$1.66026507769(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2$ | International |
$1.66022358678(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2/1.0001900224889804$ | InternationalMean |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricTurn |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricSpatian |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricGradian |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricDegree |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricArcminute |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | MetricArcsecond |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | Engineering |
$1.69327860850(52) \times 10^{-28}$ $\left[\text{hyl}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}2$ | Gravitational |
$1.66053906660(51) \times 10^{-30}$ $\left[\text{t}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{-2}5^{-3}$ | MTS |
$1.66053906660(51) \times 10^{-24}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | EMU |
$1.66053906660(51) \times 10^{-24}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | ESU |
$1.66053906660(51) \times 10^{-24}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | Gauss |
$1.66053906660(51) \times 10^{-24}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | LorentzHeaviside |
$3.6608619907(11) \times 10^{-27}$ $\left[\text{lb}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{lb}^{-1}2$ | FPS |
$9.4819224265(29) \times 10^{-30}$ $\left[\text{slinch}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2^{-1}3^{-1}$ | IPS |
$1.13783069118(35) \times 10^{-28}$ $\left[\text{slug}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2$ | British |
$3.6608619907(11) \times 10^{-27}$ $\left[\text{lbm}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{lb}^{-1}2$ | English |
$3.6608619907(11) \times 10^{-27}$ $\left[\text{lbm}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{lb}^{-1}2$ | Survey |
$3.6608619907(11) \times 10^{-27}$ $\left[\text{lb}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{lb}^{-1}2$ | MPH |
$1.66053906660(51) \times 10^{-27}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ | KKH |
$1.6533462556(50) \times 10^{-27}$ $\left[\text{keg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ | Nautical |
$1.6533462556(50) \times 10^{-27}$ $\left[\text{keg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ | Meridian |
$8.35109(18) \times 10^{-58}$ $\left[\text{M}_\odot\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{29}3^{14}5^{10}$ | IAU☉ |
$2.780463(61) \times 10^{-52}$ $\left[\text{ME}\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2$ | IAUE |
$8.74832(19) \times 10^{-55}$ $\left[\text{MJ}\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2$ | IAUJ |
$1822.888486209(53)$ $\left[\mathbb{1}\right]$ | $\mu_\text{eu}^{-1}$ | Hubble |
$6.500(48) \times 10^{-80}$ $\left[\text{M}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-8}3^{-7/2}5^{-6}$ | Cosmological |
$4.144(15) \times 10^{11}$ $\left[\text{M}\right]$ | $\hbar^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{13/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$2.704634(30) \times 10^{-19}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$ | Planck |
$7.629632(84) \times 10^{-20}$ $\left[\text{m}_\text{P}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ | PlanckGauss |
$8.931429(98) \times 10^{-19}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ | Stoney |
$1822.888486209(53)$ $\left[\mathbb{1}\right]$ | $\mu_\text{eu}^{-1}$ | Hartree |
$911.444243104(27)$ $\left[\text{M}\right]$ | $\mu_\text{eu}^{-1}2^{-1}$ | Rydberg |
$8.931429(98) \times 10^{-19}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ | Schrodinger |
$1822.888486209(53)$ $\left[\mathbb{1}\right]$ | $\mu_\text{eu}^{-1}$ | Electronic |
$1822.888486209(53)$ $\left[\mathbb{1}\right]$ | $\mu_\text{eu}^{-1}$ | Natural |
$1822.888486209(53)$ $\left[\mathbb{1}\right]$ | $\mu_\text{eu}^{-1}$ | NaturalGauss |
$0.992776097862(52)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{pu}^{-1}$ | QCD |
$0.992776097862(52)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{pu}^{-1}$ | QCDGauss |
$0.992776097862(52)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{pu}^{-1}$ | QCDoriginal |