Eddington unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Metric |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | SI2019 |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | SI1976 |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-2}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}\text{m}_\text{P}^{2}\tau^{-1/2}2^{11}3^{7/2}5^{6}$ | CODATA |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-2}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}\text{m}_\text{P}^{2}\tau^{-1/2}2^{11}3^{7/2}5^{6}$ | Conventional |
$2.554(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | International |
$2.554(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}/1.0001900224889804$ | InternationalMean |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricTurn |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricSpatian |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricGradian |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricDegree |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricArcminute |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MetricArcsecond |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Engineering |
$2.605(19) \times 10^{51}$ $\left[\text{hyl}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Gravitational |
$2.555(19) \times 10^{49}$ $\left[\text{t}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{6}3^{7/2}5^{3}$ | MTS |
$2.555(19) \times 10^{55}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{12}3^{7/2}5^{9}$ | EMU |
$2.555(19) \times 10^{55}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{12}3^{7/2}5^{9}$ | ESU |
$2.555(19) \times 10^{55}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{12}3^{7/2}5^{9}$ | Gauss |
$2.555(19) \times 10^{55}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{12}3^{7/2}5^{9}$ | LorentzHeaviside |
$5.632(42) \times 10^{52}$ $\left[\text{lb}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | FPS |
$1.459(11) \times 10^{50}$ $\left[\text{slinch}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0^{-1}\text{au}\cdot \text{ft}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{7}3^{5/2}5^{6}$ | IPS |
$1.750(13) \times 10^{51}$ $\left[\text{slug}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0^{-1}\text{au}\cdot \text{ft}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | British |
$5.632(42) \times 10^{52}$ $\left[\text{lbm}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | English |
$5.632(42) \times 10^{52}$ $\left[\text{lbm}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Survey |
$5.632(42) \times 10^{52}$ $\left[\text{lb}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{lb}^{-1}\text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | MPH |
$2.555(19) \times 10^{52}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{9}3^{7/2}5^{6}$ | KKH |
$2.543(19) \times 10^{52}$ $\left[\text{keg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0^{3/2}\text{au}\cdot \text{m}_\text{P}^{2}\text{GM}_\text{E}^{-3/2}\tau^{-7/2}2^{36}3^{7/2}5^{27}$ | Nautical |
$2.543(19) \times 10^{52}$ $\left[\text{keg}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0^{3/2}\text{au}\cdot \text{m}_\text{P}^{2}\text{GM}_\text{E}^{-3/2}\tau^{-7/2}2^{36}3^{7/2}5^{27}$ | Meridian |
$1.2847(95) \times 10^{22}$ $\left[\text{M}_\odot\right]$ | $\text{c}^{3}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}^{-2}\text{k}_\text{G}^{-2}\tau^{-7/2}2^{37}3^{35/2}5^{16}$ | IAU☉ |
$4.277(32) \times 10^{27}$ $\left[\text{ME}\right]$ | $\text{c}^{3}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{GM}_\text{E}^{-1}\tau^{-3/2}2^{9}3^{7/2}5^{6}$ | IAUE |
$1.3458(10) \times 10^{25}$ $\left[\text{MJ}\right]$ | $\text{c}^{3}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{GM}_\text{J}^{-1}\tau^{-3/2}2^{9}3^{7/2}5^{6}$ | IAUJ |
$2.804(21) \times 10^{82}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | Hubble |
$1.0$ $\left[\text{M}\right]$ | $1$ | Cosmological |
$6.375(71) \times 10^{90}$ $\left[\text{M}\right]$ | $\hbar^{-3/2}\text{c}^{3}\Omega_{\Lambda}^{-3/4}\text{H}_0^{-3/2}\text{au}^{3/2}\text{m}_\text{P}^{3/2}\tau^{-1/4}2^{29/2}3^{21/4}5^{9}$ | CosmologicalQuantum |
$4.161(31) \times 10^{60}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}\cdot 2^{19/2}3^{7/2}5^{6}$ | Planck |
$1.1737(87) \times 10^{60}$ $\left[\text{m}_\text{P}\right]$ | $\hbar^{-1}\text{c}^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{9}3^{7/2}5^{6}$ | PlanckGauss |
$1.374(10) \times 10^{61}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{2}\alpha^{-1/2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Stoney |
$2.804(21) \times 10^{82}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | Hartree |
$1.402(10) \times 10^{82}$ $\left[\text{M}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{7}3^{7/2}5^{6}$ | Rydberg |
$1.374(10) \times 10^{61}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{2}\alpha^{-1/2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{9}3^{7/2}5^{6}$ | Schrodinger |
$2.804(21) \times 10^{82}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | Electronic |
$2.804(21) \times 10^{82}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | Natural |
$2.804(21) \times 10^{82}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | NaturalGauss |
$1.527(11) \times 10^{79}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | QCD |
$1.527(11) \times 10^{79}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | QCDGauss |
$1.527(11) \times 10^{79}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6}$ | QCDoriginal |