Einstein gravitation unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{M}^{-2}\text{L}^{-2}\text{T}^{4}\]
\[\left[\hbar\cdot \text{c}^{-3}\text{m}_\text{e}^{-2}\phi\right]\]
\[\kappa = \frac{8\pi G}{c^4} = \frac{8\pi\hbar}{c^3m_P^2} = \frac{8\pi\hbar\alpha_G}{c^3m_e^2} = \frac{\alpha^4\alpha_G}{g_0^2R_\infty^2 h c}\]
Quantity | Product | UnitSystem |
---|---|---|
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | Metric |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | SI2019 |
$2.076648(46) \times 10^{-43}$ $\left[\text{kg}^{-1}\text{m}^{-1}\text{s}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | SI1976 |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_\text{K}\cdot \text{K}_\text{J}^{2}\text{m}_\text{P}^{-2}$ | CODATA |
$2.076649(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar^{2}\text{c}^{-3}{\text{R}_\text{K}^{90}}\cdot {\text{K}_\text{J}^{90}}^{2}\text{m}_\text{P}^{-2}$ | Conventional |
$2.076991(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\text{m}_\text{P}^{-2}2^{2}$ | International |
$2.077043(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}1.0001900224889804$ | InternationalMean |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricTurn |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricSpatian |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricGradian |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricDegree |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricArcminute |
$2.076648(46) \times 10^{-43}$ $\left[\text{N}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{2}$ | MetricArcsecond |
$2.117592(47) \times 10^{-44}$ $\left[\text{kgf}\cdot \text{kg}^{-2}\text{m}^{-2}\text{s}^{4}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0^{-1}\text{m}_\text{P}^{-2}2^{2}$ | Engineering |
$2.036496(45) \times 10^{-42}$ $\left[\text{kgf}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{m}_\text{P}^{-2}2^{2}$ | Gravitational |
$2.076648(46) \times 10^{-40}$ $\left[\text{sn}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{5}5^{3}$ | MTS |
$2.076648(46) \times 10^{-48}$ $\left[\text{dyn}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{-3}5^{-5}$ | EMU |
$2.076648(46) \times 10^{-48}$ $\left[\text{dyn}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{-3}5^{-5}$ | ESU |
$2.076648(46) \times 10^{-48}$ $\left[\text{dyn}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{-3}5^{-5}$ | Gauss |
$2.076648(46) \times 10^{-48}$ $\left[\text{dyn}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{-3}5^{-5}$ | LorentzHeaviside |
$2.871069(63) \times 10^{-44}$ $\left[\text{lb}^{-1}\text{ft}^{-1}\text{s}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{ft}\cdot \text{lb}\cdot \text{m}_\text{P}^{-2}2^{2}$ | FPS |
$9.23739(20) \times 10^{-43}$ $\left[\text{lb}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{lb}\cdot \text{m}_\text{P}^{-2}2^{2}$ | IPS |
$9.23739(20) \times 10^{-43}$ $\left[\text{lb}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{lb}\cdot \text{m}_\text{P}^{-2}2^{2}$ | British |
$8.92355(20) \times 10^{-46}$ $\left[\text{lbf}\cdot \text{lbm}^{-2}\text{ft}^{-2}\text{s}^{4}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0^{-1}\text{ft}^{2}\text{lb}\cdot \text{m}_\text{P}^{-2}2^{2}$ | English |
$8.92359(20) \times 10^{-46}$ $\left[\text{lbf}\cdot \text{lbm}^{-2}\text{ft}^{-2}\text{s}^{4}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0^{-1}\text{ft}_\text{US}^{2}\text{lb}\cdot \text{m}_\text{P}^{-2}2^{2}$ | Survey |
$1.169695(26) \times 10^{-47}$ $\left[\text{lb}^{-1}\text{mi}^{-1}\text{h}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{ft}\cdot \text{lb}\cdot \text{m}_\text{P}^{-2}2^{-1}3^{-3}5^{-3}11$ | MPH |
$1.602352(35) \times 10^{-47}$ $\left[\text{kg}^{-1}\text{km}^{-1}\text{h}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2^{-3}3^{-4}5^{-1}$ | KKH |
$2.984543(66) \times 10^{-47}$ $\left[\text{keg}^{-1}\text{nm}^{-1}\text{h}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0^{-2}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{2}\tau^{4}2^{-38}3^{-7}5^{-27}$ | Nautical |
$2.088703(46) \times 10^{-43}$ $\left[\text{eN}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0^{-2}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{2}\tau^{4}2^{-34}5^{-28}$ | Meridian |
$8.27497346775(66) \times 10^{-12}$ $\left[\text{M}_\odot^{-1}\text{au}^{-1}\text{D}^{2}\right]$ | $\text{c}^{-4}\text{au}^{4}\text{k}_\text{G}^{2}\tau^{3}2^{-40}3^{-20}5^{-14}$ | IAU☉ |
$6.386304000(13) \times 10^{-20}$ $\left[\text{ME}^{-1}\text{LD}^{-1}\text{D}^{2}\right]$ | $\text{c}^{-4}\text{GM}_\text{E}\cdot \tau\cdot 2^{-9}3^{-3}5^{-1}14236.999999999998$ | IAUE |
$4.11061610(29) \times 10^{-14}$ $\left[\text{MJ}^{-1}\text{JD}^{-1}\text{D}^{2}\right]$ | $\text{c}^{-4}\text{GM}_\text{J}\cdot \tau\cdot 2^{-6}3^{-5}5^{2}259492.99999999997$ | IAUJ |
$1.2435(77) \times 10^{-82}$ $\left[\text{T}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau\cdot 2^{-7}3^{-4}5^{-6}$ | Hubble |
$1.0$ $\left[\text{M}^{-1}\text{T}\right]$ | $1$ | Cosmological |
$8.520(63) \times 10^{-61}$ $\left[\text{M}^{-2}\right]$ | $\hbar\cdot \text{c}^{-2}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{-9}3^{-7/2}5^{-6}$ | CosmologicalQuantum |
$2.0$ $\left[\text{M}^{-2}\right]$ | $2$ | Planck |
$25.132741228718345$ $\left[\text{m}_\text{P}^{-2}\right]$ | $\tau\cdot 2^{2}$ | PlanckGauss |
$25.132741228718345$ $\left[\text{M}^{-1}\text{T}\right]$ | $\tau\cdot 2^{2}$ | Stoney |
$1.710893(38) \times 10^{-50}$ $\left[\text{a}_0^{3}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-1}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | Hartree |
$8.55446(19) \times 10^{-51}$ $\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-1}\text{m}_\text{P}^{-2}\tau\cdot 2^{3}$ | Rydberg |
$7.1269084156(44) \times 10^{-8}$ $\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ | $\alpha^{4}\tau\cdot 2^{2}$ | Schrodinger |
$6.03339(13) \times 10^{-42}$ $\left[\text{T}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-5}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | Electronic |
$4.402779(97) \times 10^{-44}$ $\left[\mathbb{1}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | Natural |
$4.402779(97) \times 10^{-44}$ $\left[\mathbb{1}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | NaturalGauss |
$1.484378(33) \times 10^{-37}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | QCD |
$1.484378(33) \times 10^{-37}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | QCDGauss |
$1.484378(33) \times 10^{-37}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}\tau\cdot 2^{4}$ | QCDoriginal |