electron mass unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
\[m_e = \mu_{eu}m_u = \mu_{eu}\frac{M_u}{N_A} = \frac{m_p}{\mu_{pe}} = \frac{2R_\infty h g_0}{c\alpha^2} = m_P\sqrt{\alpha_G}\]
Quantity | Product | UnitSystem |
---|---|---|
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | Metric |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | SI2019 |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | SI1976 |
$9.10938355(11) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{3}$ | CODATA |
$9.1093819203(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}{\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{3}$ | Conventional |
$9.1078806534(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2$ | International |
$9.1076530427(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2/1.0001900224889804$ | InternationalMean |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricTurn |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricSpatian |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricGradian |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricDegree |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricArcminute |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | MetricArcsecond |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | Engineering |
$9.2889862507(28) \times 10^{-32}$ $\left[\text{hyl}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1}2$ | Gravitational |
$9.1093837016(28) \times 10^{-34}$ $\left[\text{t}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{-2}5^{-3}$ | MTS |
$9.1093837016(28) \times 10^{-28}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{4}5^{3}$ | EMU |
$9.1093837016(28) \times 10^{-28}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{4}5^{3}$ | ESU |
$9.1093837016(28) \times 10^{-28}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{4}5^{3}$ | Gauss |
$9.1093837016(28) \times 10^{-28}$ $\left[\text{g}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{4}5^{3}$ | LorentzHeaviside |
$2.00827533796(62) \times 10^{-30}$ $\left[\text{lb}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{lb}^{-1}2$ | FPS |
$5.2015921425(16) \times 10^{-33}$ $\left[\text{slinch}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2^{-1}3^{-1}$ | IPS |
$6.2419105710(19) \times 10^{-32}$ $\left[\text{slug}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2$ | British |
$2.00827533796(62) \times 10^{-30}$ $\left[\text{lbm}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{lb}^{-1}2$ | English |
$2.00827533796(62) \times 10^{-30}$ $\left[\text{lbm}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{lb}^{-1}2$ | Survey |
$2.00827533796(62) \times 10^{-30}$ $\left[\text{lb}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{lb}^{-1}2$ | MPH |
$9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ | KKH |
$9.069925385(27) \times 10^{-31}$ $\left[\text{keg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ | Nautical |
$9.069925385(27) \times 10^{-31}$ $\left[\text{keg}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ | Meridian |
$4.58124(10) \times 10^{-61}$ $\left[\text{M}_\odot\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{29}3^{14}5^{10}$ | IAU☉ |
$1.525306(34) \times 10^{-55}$ $\left[\text{ME}\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2$ | IAUE |
$4.79915(11) \times 10^{-58}$ $\left[\text{MJ}\right]$ | $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2$ | IAUJ |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hubble |
$3.566(26) \times 10^{-83}$ $\left[\text{M}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-8}3^{-7/2}5^{-6}$ | Cosmological |
$2.2733(84) \times 10^{8}$ $\left[\text{M}\right]$ | $\hbar^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{13/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$1.483708(16) \times 10^{-22}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$ | Planck |
$4.185463(46) \times 10^{-23}$ $\left[\text{m}_\text{P}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\text{m}_\text{P}^{-1}2$ | PlanckGauss |
$4.899602(54) \times 10^{-22}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\text{m}_\text{P}^{-1}2$ | Stoney |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hartree |
$0.5$ $\left[\text{M}\right]$ | $2^{-1}$ | Rydberg |
$4.899602(54) \times 10^{-22}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\text{m}_\text{P}^{-1}2$ | Schrodinger |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | NaturalGauss |
$0.000544617021487(33)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCD |
$0.000544617021487(33)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCDGauss |
$0.000544617021487(33)$ $\left[\text{m}_\text{p}\right]$ | $\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCDoriginal |