Newton gravitation unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{M}^{-2}\text{L}^{2}\]
\[\left[\hbar\cdot \text{c}\cdot \text{m}_\text{e}^{-2}\phi\right]\]
\[G = k^2 = \frac{\hbar c}{m_P^2} = \frac{\hbar c\alpha_G}{m_e^2} = \frac{c^3\alpha^4\alpha_G}{8\pi g_0^2 R_\infty^2 h} = \frac{\kappa c^4}{8\pi}\]
Quantity | Product | UnitSystem |
---|---|---|
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Metric |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | SI2019 |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | SI1976 |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar^{2}\text{c}\cdot \text{R}_\text{K}\cdot \text{K}_\text{J}^{2}\text{m}_\text{P}^{-2}\tau^{-1}2^{-2}$ | CODATA |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar^{2}\text{c}\cdot {\text{R}_\text{K}^{90}}\cdot {\text{K}_\text{J}^{90}}^{2}\text{m}_\text{P}^{-2}\tau^{-1}2^{-2}$ | Conventional |
$6.67540(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\text{m}_\text{P}^{-2}\tau^{-1}$ | International |
$6.67557(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}1.0001900224889804$ | InternationalMean |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricTurn |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricSpatian |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricGradian |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricDegree |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricArcminute |
$6.67430(15) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | MetricArcsecond |
$6.80589(15) \times 10^{-12}$ $\left[\text{kgf}\cdot \text{kg}^{-2}\text{m}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0^{-1}\text{m}_\text{P}^{-2}\tau^{-1}$ | Engineering |
$6.54525(14) \times 10^{-10}$ $\left[\text{kgf}^{-1}\text{m}^{4}\text{s}^{-4}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Gravitational |
$6.67430(15) \times 10^{-8}$ $\left[\text{t}^{-1}\text{m}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{3}5^{3}$ | MTS |
$6.67430(15) \times 10^{-8}$ $\left[\text{g}^{-1}\text{cm}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{3}5^{3}$ | EMU |
$6.67430(15) \times 10^{-8}$ $\left[\text{g}^{-1}\text{cm}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{3}5^{3}$ | ESU |
$6.67430(15) \times 10^{-8}$ $\left[\text{g}^{-1}\text{cm}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{3}5^{3}$ | Gauss |
$6.67430(15) \times 10^{-8}$ $\left[\text{g}^{-1}\text{cm}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{3}5^{3}$ | LorentzHeaviside |
$1.069121(24) \times 10^{-9}$ $\left[\text{lb}^{-1}\text{ft}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{ft}^{-3}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | FPS |
$0.000713276(16)$ $\left[\text{lb}^{-1}\text{in}^{4}\text{s}^{-4}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-4}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{8}3^{4}$ | IPS |
$3.439794(76) \times 10^{-8}$ $\left[\text{lb}^{-1}\text{ft}^{4}\text{s}^{-4}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-4}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | British |
$3.322929(73) \times 10^{-11}$ $\left[\text{lbf}\cdot \text{lbm}^{-2}\text{ft}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0^{-1}\text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | English |
$3.322915(73) \times 10^{-11}$ $\left[\text{lbf}\cdot \text{lbm}^{-2}\text{ft}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0^{-1}\text{ft}_\text{US}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Survey |
$9.41304(21) \times 10^{-14}$ $\left[\text{lb}^{-1}\text{mi}^{3}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{ft}^{-3}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{-7}3\cdot 5\cdot 11^{-3}$ | MPH |
$8.64990(19) \times 10^{-13}$ $\left[\text{kg}^{-1}\text{km}^{3}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{-1}3^{4}5^{-5}$ | KKH |
$1.362047(30) \times 10^{-13}$ $\left[\text{keg}^{-1}\text{nm}^{3}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{-4}3^{13}5^{-11}$ | Nautical |
$6.67430(15) \times 10^{-11}$ $\left[\text{keg}^{-1}\text{em}^{3}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Meridian |
$0.0002959122087917961$ $\left[\text{M}_\odot^{-1}\text{au}^{3}\text{D}^{-2}\right]$ | $\text{k}_\text{G}^{2}\tau^{2}2^{-14}3^{-8}5^{-6}$ | IAU☉ |
$0.05238639498(11)$ $\left[\text{ME}^{-1}\text{LD}^{3}\text{D}^{-2}\right]$ | $\text{GM}_\text{E}\cdot 2^{5}3^{-3}5^{-5}/2.8857284100529995 \times 10^{12}$ | IAUE |
$2.00455157(14) \times 10^{-9}$ $\left[\text{MJ}^{-1}\text{JD}^{3}\text{D}^{-2}\right]$ | $\text{GM}_\text{J}\cdot 2^{-4}3^{3}5^{-14}/1.7473380767896158 \times 10^{16}$ | IAUJ |
$4.948(31) \times 10^{-84}$ $\left[\text{T}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}2^{-9}3^{-4}5^{-6}$ | Hubble |
$0.039788735772973836$ $\left[\text{M}^{-1}\text{T}\right]$ | $\tau^{-1}2^{-2}$ | Cosmological |
$3.390(25) \times 10^{-62}$ $\left[\text{M}^{-2}\right]$ | $\hbar\cdot \text{c}^{-2}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{-11}3^{-7/2}5^{-6}$ | CosmologicalQuantum |
$0.07957747154594767$ $\left[\text{M}^{-2}\right]$ | $\tau^{-1}2^{-1}$ | Planck |
$1.0$ $\left[\text{m}_\text{P}^{-2}\right]$ | $1$ | PlanckGauss |
$1.0$ $\left[\text{M}^{-1}\text{T}\right]$ | $1$ | Stoney |
$2.400610(53) \times 10^{-43}$ $\left[\text{a}_0^{-1}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-5}\text{m}_\text{P}^{-2}2^{2}$ | Hartree |
$1.920488(42) \times 10^{-42}$ $\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-5}\text{m}_\text{P}^{-2}2^{5}$ | Rydberg |
$1.0$ $\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-2}\right]$ | $1$ | Schrodinger |
$2.400610(53) \times 10^{-43}$ $\left[\text{T}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-5}\text{m}_\text{P}^{-2}2^{2}$ | Electronic |
$1.751810(39) \times 10^{-45}$ $\left[\mathbb{1}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}2^{2}$ | Natural |
$1.751810(39) \times 10^{-45}$ $\left[\mathbb{1}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}2^{2}$ | NaturalGauss |
$5.90615(13) \times 10^{-39}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}2^{2}$ | QCD |
$5.90615(13) \times 10^{-39}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}2^{2}$ | QCDGauss |
$5.90615(13) \times 10^{-39}$ $\left[\text{m}_\text{p}^{-2}\right]$ | $\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\text{m}_\text{P}^{-2}2^{2}$ | QCDoriginal |