Hartree unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}\]
\[\left[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]\]
\[E_h = \frac{m_e}{g_0}(c\alpha)^2 = \frac{\hbar c\alpha}{a_0} = \frac{g_0\hbar^2}{m_ea_0^2} = 2R_\infty hc = \frac{m_P}{g_0}\sqrt{\alpha_G}(c\alpha)^2\]
Quantity | Product | UnitSystem |
---|---|---|
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | Metric |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | SI2019 |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | SI1976 |
$4.359744649(54) \times 10^{-18}$ $\left[\text{J}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{3}$ | CODATA |
$4.3597438697179(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{3}$ | Conventional |
$4.3590253644063(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2$ | International |
$4.3589164300579(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2/1.0001900224889804$ | InternationalMean |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricTurn |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricSpatian |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricGradian |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricDegree |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricArcminute |
$4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ | MetricArcsecond |
$4.4457023776796(85) \times 10^{-19}$ $\left[\text{kgf}\cdot \text{m}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}2$ | Engineering |
$4.4457023776796(85) \times 10^{-19}$ $\left[\text{kgf}\cdot \text{m}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}2$ | Gravitational |
$4.3597447222072(83) \times 10^{-21}$ $\left[\text{t}\cdot \text{m}^{2}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{-2}5^{-3}$ | MTS |
$4.3597447222072(83) \times 10^{-11}$ $\left[\text{erg}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{8}5^{7}$ | EMU |
$4.3597447222072(83) \times 10^{-11}$ $\left[\text{erg}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{8}5^{7}$ | ESU |
$4.3597447222072(83) \times 10^{-11}$ $\left[\text{erg}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{8}5^{7}$ | Gauss |
$4.3597447222072(83) \times 10^{-11}$ $\left[\text{erg}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{8}5^{7}$ | LorentzHeaviside |
$1.0345831352843(20) \times 10^{-16}$ $\left[\text{lb}\cdot \text{ft}^{2}\text{s}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{ft}^{-2}\text{lb}^{-1}2$ | FPS |
$3.8586992251336(74) \times 10^{-17}$ $\left[\text{lb}\cdot \text{in}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2^{3}3$ | IPS |
$3.2155826876114(62) \times 10^{-18}$ $\left[\text{lb}\cdot \text{ft}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2$ | British |
$3.2155826876114(62) \times 10^{-18}$ $\left[\text{lbf}\cdot \text{ft}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2$ | English |
$3.2155762564460(62) \times 10^{-18}$ $\left[\text{lbf}\cdot \text{ft}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{-1}\text{ft}_\text{US}^{-1}\text{lb}^{-1}2$ | Survey |
$4.8095290379950(92) \times 10^{-17}$ $\left[\text{lb}\cdot \text{mi}^{2}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{ft}^{-2}\text{lb}^{-1}2^{-1}3^{2}5^{2}11^{-2}$ | MPH |
$5.650229159981(11) \times 10^{-17}$ $\left[\text{kg}\cdot \text{km}^{2}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2^{3}3^{4}5^{-2}$ | KKH |
$1.6357293497(82) \times 10^{-17}$ $\left[\text{keg}\cdot \text{nm}^{2}\text{h}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{46}3^{10}5^{29}$ | Nautical |
$4.328315651(22) \times 10^{-18}$ $\left[\text{eJ}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{46}5^{35}$ | Meridian |
$7.31361(16) \times 10^{-61}$ $\left[\text{M}_\odot\cdot \text{au}^{2}\text{D}^{-2}\right]$ | $\hbar^{2}\text{c}^{2}\text{R}_{\infty}\cdot \text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{43}3^{20}5^{14}$ | IAU☉ |
$3.688010(81) \times 10^{-50}$ $\left[\text{ME}\cdot \text{LD}^{2}\text{D}^{-2}\right]$ | $\hbar^{2}\text{c}^{2}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{9}5^{-2}/2.0269216899999997 \times 10^{8}$ | IAUE |
$2.829242(62) \times 10^{-59}$ $\left[\text{MJ}\cdot \text{JD}^{2}\text{D}^{-2}\right]$ | $\hbar^{2}\text{c}^{2}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{3}3^{4}5^{-8}/67336617049$ | IAUJ |
$5.3251354520(16) \times 10^{-5}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}$ | Hubble |
$1.899(14) \times 10^{-87}$ $\left[\text{M}\right]$ | $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-8}3^{-7/2}5^{-6}$ | Cosmological |
$12105.0 (\pm 45.0)$ $\left[\text{M}\right]$ | $\hbar^{1/2}\text{R}_{\infty}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{13/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$7.900946(87) \times 10^{-27}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$ | Planck |
$2.228816(25) \times 10^{-27}$ $\left[\text{m}_\text{P}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-1}2$ | PlanckGauss |
$2.609105(29) \times 10^{-26}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}2$ | Stoney |
$1.0$ $\left[\text{a}_0^{-2}\right]$ | $1$ | Hartree |
$2.0$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ | $2$ | Rydberg |
$4.899602(54) \times 10^{-22}$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\text{m}_\text{P}^{-1}2$ | Schrodinger |
$5.3251354520(16) \times 10^{-5}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}$ | Electronic |
$5.3251354520(16) \times 10^{-5}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}$ | Natural |
$5.3251354520(16) \times 10^{-5}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}$ | NaturalGauss |
$2.90015940891(91) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCD |
$2.90015940891(91) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCDGauss |
$2.90015940891(91) \times 10^{-8}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}$ | QCDoriginal |