hyperfine transition unit
data derived with UnitSystems.jl
\[\text{T}^{-1}\]
\[\left[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]\]
\[\Delta\nu_{\text{Cs}} = \Delta\tilde\nu_{\text{Cs}}c = \frac{\Delta\omega_{\text{Cs}}}{2\pi} = \frac{c}{\Delta\lambda_{\text{Cs}}} = \frac{\Delta E_{\text{Cs}}}{h}\]
Quantity | Product | UnitSystem |
---|---|---|
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Metric |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | SI2019 |
$9.19263177 \times 10^{9}$ $\left[\text{s}^{-1}\right]$ | $\Delta\nu_\text{Cs}$ | SI1976 |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | CODATA |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Conventional |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | International |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | InternationalMean |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricTurn |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricSpatian |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricGradian |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricDegree |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricArcminute |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | MetricArcsecond |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Engineering |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Gravitational |
$9.19263177 \times 10^{9}$ $\left[\text{s}^{-1}\right]$ | $\Delta\nu_\text{Cs}$ | MTS |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | EMU |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | ESU |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Gauss |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | LorentzHeaviside |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | FPS |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | IPS |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | British |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | English |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Survey |
$3.3093474372 \times 10^{13}$ $\left[\text{h}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{4}3^{2}5^{2}$ | MPH |
$3.3093474372 \times 10^{13}$ $\left[\text{h}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{4}3^{2}5^{2}$ | KKH |
$3.3093474372 \times 10^{13}$ $\left[\text{h}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{4}3^{2}5^{2}$ | Nautical |
$9.19263177 \times 10^{9}$ $\left[\text{Hz}\right]$ | $\Delta\nu_\text{Cs}$ | Meridian |
$7.94243384928 \times 10^{14}$ $\left[\text{D}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{7}3^{3}5^{2}$ | IAU☉ |
$7.942433849280001 \times 10^{14}$ $\left[\text{D}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{7}3^{3}5^{2}1$ | IAUE |
$7.94243384928 \times 10^{14}$ $\left[\text{D}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot 2^{7}3^{3}5^{2}$ | IAUJ |
$4.192(26) \times 10^{27}$ $\left[\text{T}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot \text{H}_0^{-1}\text{au}\cdot \tau^{-1}2^{10}3^{4}5^{6}$ | Hubble |
$1.462(11) \times 10^{28}$ $\left[\text{T}^{-1}\right]$ | $\Delta\nu_\text{Cs}\cdot \Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \tau^{-1/2}2^{11}3^{7/2}5^{6}$ | Cosmological |
$0.0026917(10)$ $\left[\text{M}\right]$ | $\hbar^{1/2}\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{-3/4}2^{11/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$1.756847(19) \times 10^{-33}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-2}\Delta\nu_\text{Cs}\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ | Planck |
$4.955975(55) \times 10^{-34}$ $\left[\text{m}_\text{P}\right]$ | $\hbar\cdot \text{c}^{-2}\Delta\nu_\text{Cs}\cdot \text{m}_\text{P}^{-1}\tau^{-1}$ | PlanckGauss |
$4.233619(47) \times 10^{-35}$ $\left[\text{T}^{-1}\right]$ | $\hbar\cdot \text{c}^{-2}\Delta\nu_\text{Cs}\cdot \alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ | Stoney |
$2.2235912908526(43) \times 10^{-7}$ $\left[\text{a}_0^{-2}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ | Hartree |
$4.4471825817053(85) \times 10^{-7}$ $\left[\text{T}^{-1}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\tau^{-1}$ | Rydberg |
$1.089471(12) \times 10^{-28}$ $\left[\text{T}^{-1}\right]$ | $\hbar\cdot \text{c}^{-2}\Delta\nu_\text{Cs}\cdot \alpha^{-5/2}\text{m}_\text{P}^{-1}\tau^{-1}$ | Schrodinger |
$8.6407403112(40) \times 10^{-14}$ $\left[\text{T}^{-1}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ | Electronic |
$1.18409248138(36) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ | Natural |
$1.18409248138(36) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ | NaturalGauss |
$6.4487692037(20) \times 10^{-15}$ $\left[\text{m}_\text{p}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCD |
$6.4487692037(20) \times 10^{-15}$ $\left[\text{m}_\text{p}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCDGauss |
$6.4487692037(20) \times 10^{-15}$ $\left[\text{m}_\text{p}\right]$ | $\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCDoriginal |