Jupiter distance unit
data derived with UnitSystems.jl
\[\text{L}\]
\[\left[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | Metric |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | SI2019 |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | SI1976 |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | CODATA |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | Conventional |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | International |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | InternationalMean |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricTurn |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricSpatian |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricGradian |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricDegree |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricArcminute |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MetricArcsecond |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | Engineering |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | Gravitational |
$7.78479 \times 10^{11}$ $\left[\text{m}\right]$ | $2^{6}3\cdot 5^{6}259493$ | MTS |
$7.78479 \times 10^{13}$ $\left[\text{cm}\right]$ | $2^{8}3\cdot 5^{8}259493$ | EMU |
$7.78479 \times 10^{13}$ $\left[\text{cm}\right]$ | $2^{8}3\cdot 5^{8}259493$ | ESU |
$7.78479 \times 10^{13}$ $\left[\text{cm}\right]$ | $2^{8}3\cdot 5^{8}259493$ | Gauss |
$7.78479 \times 10^{13}$ $\left[\text{cm}\right]$ | $2^{8}3\cdot 5^{8}259493$ | LorentzHeaviside |
$2.554064960629921 \times 10^{12}$ $\left[\text{ft}\right]$ | $\text{ft}^{-1}2^{6}3\cdot 5^{6}259493$ | FPS |
$3.064877952755905 \times 10^{13}$ $\left[\text{in}\right]$ | $\text{ft}^{-1}2^{8}3^{2}5^{6}259493$ | IPS |
$2.554064960629921 \times 10^{12}$ $\left[\text{ft}\right]$ | $\text{ft}^{-1}2^{6}3\cdot 5^{6}259493$ | British |
$2.554064960629921 \times 10^{12}$ $\left[\text{ft}\right]$ | $\text{ft}^{-1}2^{6}3\cdot 5^{6}259493$ | English |
$2.5540598525000005 \times 10^{12}$ $\left[\text{ft}\right]$ | $\text{ft}_\text{US}^{-1}2^{6}3\cdot 5^{6}259493$ | Survey |
$4.8372442436172754 \times 10^{8}$ $\left[\text{mi}\right]$ | $\text{ft}^{-1}2\cdot 5^{5}11^{-1}259493$ | MPH |
$7.78479 \times 10^{8}$ $\left[\text{km}\right]$ | $2^{3}3\cdot 5^{3}259493$ | KKH |
$4.1977080907(42) \times 10^{8}$ $\left[\text{nm}\right]$ | $\text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{11}3^{4}5^{8}259493$ | Nautical |
$7.7735335014(78) \times 10^{11}$ $\left[\text{em}\right]$ | $\text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{15}3\cdot 5^{13}259493$ | Meridian |
$5.20381069836(10)$ $\left[\text{au}\right]$ | $\text{au}^{-1}2^{6}3\cdot 5^{6}259493$ | IAU☉ |
$2025.1847689510116$ $\left[\text{LD}\right]$ | $2^{3}3^{-2}5^{3}18.226662920559107$ | IAUE |
$1.0$ $\left[\text{JD}\right]$ | $1$ | IAUJ |
$5.694(35) \times 10^{-15}$ $\left[\text{T}\right]$ | $\text{c}^{-1}\text{H}_0\cdot \text{au}^{-1}\tau\cdot 2^{-4}3^{-3}259493$ | Hubble |
$1.633(12) \times 10^{-15}$ $\left[\text{T}\right]$ | $\text{c}^{-1}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\tau^{1/2}2^{-5}3^{-5/2}259493$ | Cosmological |
$8.868(33) \times 10^{15}$ $\left[\text{M}^{-1}\right]$ | $\hbar^{-1/2}\Omega_{\Lambda}^{1/4}\text{H}_0^{1/2}\text{au}^{-1/2}\text{m}_\text{P}^{1/2}\tau^{3/4}2^{1/2}3^{-3/4}5^{3}259493$ | CosmologicalQuantum |
$1.358726(15) \times 10^{46}$ $\left[\text{M}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{11/2}3\cdot 5^{6}259493$ | Planck |
$4.816560(53) \times 10^{46}$ $\left[\text{m}_\text{P}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau\cdot 2^{6}3\cdot 5^{6}259493$ | PlanckGauss |
$5.638379(62) \times 10^{47}$ $\left[\text{T}\right]$ | $\hbar^{-1}\text{c}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot \tau\cdot 2^{6}3\cdot 5^{6}259493$ | Stoney |
$1.47111210377(23) \times 10^{22}$ $\left[\text{a}_0\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2^{7}3\cdot 5^{6}259493$ | Hartree |
$1.47111210377(23) \times 10^{22}$ $\left[\text{a}_0\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2^{7}3\cdot 5^{6}259493$ | Rydberg |
$3.002513(33) \times 10^{43}$ $\left[\text{L}\right]$ | $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau\cdot 2^{6}3\cdot 5^{6}259493$ | Schrodinger |
$2.7625815663(13) \times 10^{26}$ $\left[\text{T}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{7}3\cdot 5^{6}259493$ | Electronic |
$2.01595316905(62) \times 10^{24}$ $\left[\mathbb{1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{7}3\cdot 5^{6}259493$ | Natural |
$2.01595316905(62) \times 10^{24}$ $\left[\mathbb{1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{7}3\cdot 5^{6}259493$ | NaturalGauss |
$3.7015978009(12) \times 10^{27}$ $\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{7}3\cdot 5^{6}259493$ | QCD |
$3.7015978009(12) \times 10^{27}$ $\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{7}3\cdot 5^{6}259493$ | QCDGauss |
$3.7015978009(12) \times 10^{27}$ $\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{7}3\cdot 5^{6}259493$ | QCDoriginal |