Kelvin unit
data derived with UnitSystems.jl
\[\Theta\]
\[\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$1.0$ $\left[\text{K}\right]$ | $1$ | Metric |
$0.99999999966(31)$ $\left[\text{K}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | SI2019 |
$1.0000171533153932$ $\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}/8.31432$ | SI1976 |
$1.00000034(58)$ $\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{R}_\text{u}^{-1}$ | CODATA |
$1.0$ $\left[\text{K}\right]$ | $1$ | Conventional |
$1.0$ $\left[\text{K}\right]$ | $1$ | International |
$1.0$ $\left[\text{K}\right]$ | $1$ | InternationalMean |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricTurn |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricSpatian |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricGradian |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricDegree |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricArcminute |
$1.0$ $\left[\text{K}\right]$ | $1$ | MetricArcsecond |
$1.0$ $\left[\text{K}\right]$ | $1$ | Engineering |
$1.0$ $\left[\text{K}\right]$ | $1$ | Gravitational |
$1.0$ $\left[\text{K}\right]$ | $1$ | MTS |
$1.0$ $\left[\text{K}\right]$ | $1$ | EMU |
$1.0$ $\left[\text{K}\right]$ | $1$ | ESU |
$1.0$ $\left[\text{K}\right]$ | $1$ | Gauss |
$1.0$ $\left[\text{K}\right]$ | $1$ | LorentzHeaviside |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | FPS |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | IPS |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | British |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | English |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | Survey |
$1.8$ $\left[{^\circ}\text{R}\right]$ | $3^{2}5^{-1}$ | MPH |
$1.0$ $\left[\text{K}\right]$ | $1$ | KKH |
$1.0$ $\left[\text{K}\right]$ | $1$ | Nautical |
$1.0$ $\left[\text{K}\right]$ | $1$ | Meridian |
$1.0$ $\left[\text{K}\right]$ | $1$ | IAU☉ |
$1.0000000000000002$ $\left[\text{K}\right]$ | $1$ | IAUE |
$1.0$ $\left[\text{K}\right]$ | $1$ | IAUJ |
$1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ | Hubble |
$6.013(45) \times 10^{-93}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-5}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-5}3^{-7/2}5^{-3}$ | Cosmological |
$0.03834(14)$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{1/2}\text{c}^{-2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{19/2}3^{7/4}5^{6}$ | CosmologicalQuantum |
$2.502081(28) \times 10^{-32}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{9/2}5^{3}$ | Planck |
$7.058239(78) \times 10^{-33}$ $\left[\text{m}_\text{P}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$ | PlanckGauss |
$8.262543(91) \times 10^{-32}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$ | Stoney |
$3.16681156237(97) \times 10^{-6}$ $\left[\text{a}_0^{-2}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ | Hartree |
$6.3336231247(19) \times 10^{-6}$ $\left[\text{T}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ | Rydberg |
$1.551612(17) \times 10^{-27}$ $\left[\text{T}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-9/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$ | Schrodinger |
$1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ | Electronic |
$1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ | Natural |
$1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ | NaturalGauss |
$9.18425834883(48) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}5^{3}$ | QCD |
$9.18425834883(48) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}5^{3}$ | QCDGauss |
$9.18425834883(48) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}5^{3}$ | QCDoriginal |