kilopond unit
data derived with UnitSystems.jl
\[\text{F}\]
\[\left[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | Metric |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | SI2019 |
$9.80665$ $\left[\text{kg}\cdot \text{m}\cdot \text{s}^{-2}\right]$ | $\text{g}_0$ | SI1976 |
$9.80664984(12)$ $\left[\text{N}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{2}$ | CODATA |
$9.806648082441818$ $\left[\text{N}\right]$ | $\hbar^{-1}\text{g}_0\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{2}$ | Conventional |
$9.805031902926094$ $\left[\text{N}\right]$ | $\text{g}_0\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}$ | International |
$9.804786869995041$ $\left[\text{N}\right]$ | $\text{g}_0/1.0001900224889804$ | InternationalMean |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricTurn |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricSpatian |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricGradian |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricDegree |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricArcminute |
$9.80665$ $\left[\text{N}\right]$ | $\text{g}_0$ | MetricArcsecond |
$1.0$ $\left[\text{kgf}\right]$ | $1$ | Engineering |
$1.0$ $\left[\text{kgf}\right]$ | $1$ | Gravitational |
$0.00980665$ $\left[\text{sn}\right]$ | $\text{g}_0\cdot 2^{-3}5^{-3}$ | MTS |
$980665.0$ $\left[\text{dyn}\right]$ | $\text{g}_0\cdot 2^{5}5^{5}$ | EMU |
$980665.0$ $\left[\text{dyn}\right]$ | $\text{g}_0\cdot 2^{5}5^{5}$ | ESU |
$980665.0$ $\left[\text{dyn}\right]$ | $\text{g}_0\cdot 2^{5}5^{5}$ | Gauss |
$980665.0$ $\left[\text{dyn}\right]$ | $\text{g}_0\cdot 2^{5}5^{5}$ | LorentzHeaviside |
$70.9316352839675$ $\left[\text{pdl}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}^{-1}$ | FPS |
$2.2046226218487757$ $\left[\text{lb}\right]$ | $\text{lb}^{-1}$ | IPS |
$2.2046226218487757$ $\left[\text{lb}\right]$ | $\text{lb}^{-1}$ | British |
$2.2046226218487757$ $\left[\text{lbf}\right]$ | $\text{lb}^{-1}$ | English |
$2.2046226218487757$ $\left[\text{lbf}\right]$ | $\text{lb}^{-1}$ | Survey |
$174104.9229697384$ $\left[\text{lb}\cdot \text{mi}\cdot \text{h}^{-2}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}^{-1}2^{3}3^{3}5^{3}11^{-1}$ | MPH |
$127094.184$ $\left[\text{kg}\cdot \text{km}\cdot \text{h}^{-2}\right]$ | $\text{g}_0\cdot 2^{5}3^{4}5$ | KKH |
$68234.76945(27)$ $\left[\text{keg}\cdot \text{nm}\cdot \text{h}^{-2}\right]$ | $\text{g}_0^{3}\text{GM}_\text{E}^{-2}\tau^{-4}2^{40}3^{7}5^{27}$ | Nautical |
$9.750052791(39)$ $\left[\text{eN}\right]$ | $\text{g}_0^{3}\text{GM}_\text{E}^{-2}\tau^{-4}2^{36}5^{28}$ | Meridian |
$2.461030(54) \times 10^{-31}$ $\left[\text{M}_\odot\cdot \text{au}\cdot \text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ | IAU☉ |
$3.188849(70) \times 10^{-23}$ $\left[\text{ME}\cdot \text{LD}\cdot \text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{11}3^{3}5/14236.999999999996$ | IAUE |
$4.95424(11) \times 10^{-29}$ $\left[\text{MJ}\cdot \text{JD}\cdot \text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{8}3^{5}5^{-2}/259493$ | IAUJ |
$1.638(10) \times 10^{40}$ $\left[\text{T}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0^{-1}\text{g}_0\cdot \text{au}\cdot \tau^{-1}2^{9}3^{4}5^{6}$ | Hubble |
$2.036496(45) \times 10^{-42}$ $\left[\text{M}\cdot \text{T}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{m}_\text{P}^{-2}2^{2}$ | Cosmological |
$2.390(18) \times 10^{18}$ $\left[\text{M}^{2}\right]$ | $\text{c}^{-1}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0\cdot \text{au}\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{11}3^{7/2}5^{6}$ | CosmologicalQuantum |
$1.018248(22) \times 10^{-42}$ $\left[\text{M}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{m}_\text{P}^{-2}2$ | Planck |
$8.10296(18) \times 10^{-44}$ $\left[\text{m}_\text{P}^{2}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | PlanckGauss |
$8.10296(18) \times 10^{-44}$ $\left[\text{M}\cdot \text{T}^{-1}\right]$ | $\hbar\cdot \text{c}^{-3}\text{g}_0\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Stoney |
$1.19031182465(18) \times 10^{8}$ $\left[\text{a}_0^{-3}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \text{g}_0\cdot \tau^{-1}2^{-2}$ | Hartree |
$2.38062364930(36) \times 10^{8}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \text{g}_0\cdot \tau^{-1}2^{-1}$ | Rydberg |
$2.857475(63) \times 10^{-35}$ $\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ | $\hbar\cdot \text{c}^{-3}\alpha^{-4}\text{g}_0\cdot \text{m}_\text{P}^{-2}\tau^{-1}$ | Schrodinger |
$0.33753752856(26)$ $\left[\text{T}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\text{g}_0\cdot \tau^{-1}2^{-2}$ | Electronic |
$46.254792454(28)$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \tau^{-1}2^{-2}$ | Natural |
$46.254792454(28)$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \tau^{-1}2^{-2}$ | NaturalGauss |
$1.37195276082(86) \times 10^{-5}$ $\left[\text{m}_\text{p}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\text{g}_0\cdot \tau^{-1}2^{-2}$ | QCD |
$1.37195276082(86) \times 10^{-5}$ $\left[\text{m}_\text{p}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\text{g}_0\cdot \tau^{-1}2^{-2}$ | QCDGauss |
$1.37195276082(86) \times 10^{-5}$ $\left[\text{m}_\text{p}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\text{g}_0\cdot \tau^{-1}2^{-2}$ | QCDoriginal |