light speed unit
data derived with UnitSystems.jl
\[\text{L}\cdot \text{T}^{-1}\]
\[\left[\text{c}\right]\]
\[c = \frac1{\alpha_L\sqrt{\mu_0\varepsilon_0}} = \frac{1}{\alpha}\sqrt{E_h\frac{g_0}{m_e}} = \frac{g_0\hbar\alpha}{m_e r_e} = \frac{e^2k_e}{\hbar\alpha} = \frac{m_e^2G}{\hbar\alpha_G}\]
Quantity | Product | UnitSystem |
---|---|---|
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | Metric |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | SI2019 |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | SI1976 |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | CODATA |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | Conventional |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | International |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | InternationalMean |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricTurn |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricSpatian |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricGradian |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricDegree |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricArcminute |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MetricArcsecond |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | Engineering |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | Gravitational |
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}$ | MTS |
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | EMU |
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | ESU |
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | Gauss |
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot 2^{2}5^{2}$ | LorentzHeaviside |
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{ft}^{-1}$ | FPS |
$1.1802852677165354 \times 10^{10}$ $\left[\text{in}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{ft}^{-1}2^{2}3$ | IPS |
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{ft}^{-1}$ | British |
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{ft}^{-1}$ | English |
$9.835690892883334 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{ft}_\text{US}^{-1}$ | Survey |
$6.706166293843951 \times 10^{8}$ $\left[\text{mi}\cdot \text{h}^{-1}\right]$ | $\text{c}\cdot \text{ft}^{-1}2^{-1}3\cdot 5\cdot 11^{-1}$ | MPH |
$1.0792528488 \times 10^{9}$ $\left[\text{km}\cdot \text{h}^{-1}\right]$ | $\text{c}\cdot 2\cdot 3^{2}5^{-1}$ | KKH |
$5.8195383759(58) \times 10^{8}$ $\left[\text{nm}\cdot \text{h}^{-1}\right]$ | $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{9}3^{5}5^{4}$ | Nautical |
$2.9935896996(30) \times 10^{8}$ $\left[\text{em}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{9}5^{7}$ | Meridian |
$173.1446326742(35)$ $\left[\text{au}\cdot \text{D}^{-1}\right]$ | $\text{c}\cdot \text{au}^{-1}2^{7}3^{3}5^{2}$ | IAU☉ |
$67383.2876027253$ $\left[\text{LD}\cdot \text{D}^{-1}\right]$ | $\text{c}\cdot 2^{4}5^{-1}/14237$ | IAUE |
$33.272661653300865$ $\left[\text{JD}\cdot \text{D}^{-1}\right]$ | $\text{c}\cdot 2\cdot 3^{2}5^{-4}/259493$ | IAUJ |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hubble |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Cosmological |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | CosmologicalQuantum |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Planck |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | PlanckGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Stoney |
$137.035999084(21)$ $\left[\text{a}_0^{-1}\right]$ | $\alpha^{-1}$ | Hartree |
$274.071998168(42)$ $\left[\text{L}\cdot \text{T}^{-1}\right]$ | $\alpha^{-1}2$ | Rydberg |
$137.035999084(21)$ $\left[\text{L}\cdot \text{T}^{-1}\right]$ | $\alpha^{-1}$ | Schrodinger |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | NaturalGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCD |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDoriginal |