light speed unit

data derived with UnitSystems.jl DOI

\[\text{L}\cdot \text{T}^{-1}\]

\[\left[\text{c}\right]\]

\[c = \frac1{\alpha_L\sqrt{\mu_0\varepsilon_0}} = \frac{1}{\alpha}\sqrt{E_h\frac{g_0}{m_e}} = \frac{g_0\hbar\alpha}{m_e r_e} = \frac{e^2k_e}{\hbar\alpha} = \frac{m_e^2G}{\hbar\alpha_G}\]

Quantity Product UnitSystem
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ Metric
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ SI2019
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ SI1976
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ CODATA
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ Conventional
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ International
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ InternationalMean
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricTurn
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricSpatian
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricGradian
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricDegree
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricArcminute
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MetricArcsecond
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ Engineering
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ Gravitational
$2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}$ MTS
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot 2^{2}5^{2}$ EMU
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot 2^{2}5^{2}$ ESU
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot 2^{2}5^{2}$ Gauss
$2.99792458 \times 10^{10}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot 2^{2}5^{2}$ LorentzHeaviside
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{ft}^{-1}$ FPS
$1.1802852677165354 \times 10^{10}$ $\left[\text{in}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{ft}^{-1}2^{2}3$ IPS
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{ft}^{-1}$ British
$9.835710564304461 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{ft}^{-1}$ English
$9.835690892883334 \times 10^{8}$ $\left[\text{ft}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{ft}_\text{US}^{-1}$ Survey
$6.706166293843951 \times 10^{8}$ $\left[\text{mi}\cdot \text{h}^{-1}\right]$ $\text{c}\cdot \text{ft}^{-1}2^{-1}3\cdot 5\cdot 11^{-1}$ MPH
$1.0792528488 \times 10^{9}$ $\left[\text{km}\cdot \text{h}^{-1}\right]$ $\text{c}\cdot 2\cdot 3^{2}5^{-1}$ KKH
$5.8195383759(58) \times 10^{8}$ $\left[\text{nm}\cdot \text{h}^{-1}\right]$ $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{9}3^{5}5^{4}$ Nautical
$2.9935896996(30) \times 10^{8}$ $\left[\text{em}\cdot \text{s}^{-1}\right]$ $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}\tau^{-1}2^{9}5^{7}$ Meridian
$173.1446326742(35)$ $\left[\text{au}\cdot \text{D}^{-1}\right]$ $\text{c}\cdot \text{au}^{-1}2^{7}3^{3}5^{2}$ IAU☉
$67383.2876027253$ $\left[\text{LD}\cdot \text{D}^{-1}\right]$ $\text{c}\cdot 2^{4}5^{-1}/14237$ IAUE
$33.272661653300865$ $\left[\text{JD}\cdot \text{D}^{-1}\right]$ $\text{c}\cdot 2\cdot 3^{2}5^{-4}/259493$ IAUJ
$1.0$ $\left[\mathbb{1}\right]$ $1$ Hubble
$1.0$ $\left[\mathbb{1}\right]$ $1$ Cosmological
$1.0$ $\left[\mathbb{1}\right]$ $1$ CosmologicalQuantum
$1.0$ $\left[\mathbb{1}\right]$ $1$ Planck
$1.0$ $\left[\mathbb{1}\right]$ $1$ PlanckGauss
$1.0$ $\left[\mathbb{1}\right]$ $1$ Stoney
$137.035999084(21)$ $\left[\text{a}_0^{-1}\right]$ $\alpha^{-1}$ Hartree
$274.071998168(42)$ $\left[\text{L}\cdot \text{T}^{-1}\right]$ $\alpha^{-1}2$ Rydberg
$137.035999084(21)$ $\left[\text{L}\cdot \text{T}^{-1}\right]$ $\alpha^{-1}$ Schrodinger
$1.0$ $\left[\mathbb{1}\right]$ $1$ Electronic
$1.0$ $\left[\mathbb{1}\right]$ $1$ Natural
$1.0$ $\left[\mathbb{1}\right]$ $1$ NaturalGauss
$1.0$ $\left[\mathbb{1}\right]$ $1$ QCD
$1.0$ $\left[\mathbb{1}\right]$ $1$ QCDGauss
$1.0$ $\left[\mathbb{1}\right]$ $1$ QCDoriginal