Loschmidt unit
data derived with UnitSystems.jl
\[\text{L}^{-3}\]
\[\left[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}\right]\]
\[\frac{p_0}{k_B T_0} = \frac{N_Ap_0}{R_uT_0} = \frac{\mu_{eu}M_up_0}{m_e R_u T_0} = \frac{M_u \mu_{eu}c\alpha^2p_0}{2R_uR_\infty hg_0 T_0}\]
Quantity | Product | UnitSystem |
---|---|---|
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | Metric |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | SI2019 |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | SI1976 |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | CODATA |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | Conventional |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | International |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | InternationalMean |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricTurn |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricSpatian |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricGradian |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricDegree |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricArcminute |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MetricArcsecond |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | Engineering |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | Gravitational |
$2.686780111798444 \times 10^{25}$ $\left[\text{m}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}$ | MTS |
$2.6867801117984436 \times 10^{19}$ $\left[\text{mL}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{-6}5^{-6}$ | EMU |
$2.6867801117984436 \times 10^{19}$ $\left[\text{mL}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{-6}5^{-6}$ | ESU |
$2.6867801117984436 \times 10^{19}$ $\left[\text{mL}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{-6}5^{-6}$ | Gauss |
$2.6867801117984436 \times 10^{19}$ $\left[\text{mL}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{-6}5^{-6}$ | LorentzHeaviside |
$7.608114025223316 \times 10^{23}$ $\left[\text{ft}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}^{3}\text{T}_0^{-1}\text{atm}$ | FPS |
$4.402843764596826 \times 10^{20}$ $\left[\text{in}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}^{3}\text{T}_0^{-1}\text{atm}\cdot 2^{-6}3^{-3}$ | IPS |
$7.608114025223316 \times 10^{23}$ $\left[\text{ft}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}^{3}\text{T}_0^{-1}\text{atm}$ | British |
$7.608114025223316 \times 10^{23}$ $\left[\text{ft}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}^{3}\text{T}_0^{-1}\text{atm}$ | English |
$7.608159674090059 \times 10^{23}$ $\left[\text{ft}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}_\text{US}^{3}\text{T}_0^{-1}\text{atm}$ | Survey |
$1.1198988030953485 \times 10^{35}$ $\left[\text{mi}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{ft}^{3}\text{T}_0^{-1}\text{atm}\cdot 2^{15}3^{3}5^{3}11^{3}$ | MPH |
$2.686780111798444 \times 10^{34}$ $\left[\text{km}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{9}5^{9}$ | KKH |
$1.7137052481(52) \times 10^{35}$ $\left[\text{nm}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{g}_0^{-3/2}\text{T}_0^{-1}\text{atm}\cdot \text{GM}_\text{E}^{3/2}\tau^{3}2^{-15}3^{-9}5^{-6}$ | Nautical |
$2.6984688319(81) \times 10^{25}$ $\left[\text{em}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{g}_0^{-3/2}\text{T}_0^{-1}\text{atm}\cdot \text{GM}_\text{E}^{3/2}\tau^{3}2^{-27}5^{-21}$ | Meridian |
$8.99514898792(54) \times 10^{58}$ $\left[\text{au}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{au}^{3}\text{T}_0^{-1}\text{atm}$ | IAU☉ |
$1.5260855229268516 \times 10^{51}$ $\left[\text{LD}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{9}3^{9}5^{9}2885728410053$ | IAUE |
$1.26757256219275 \times 10^{61}$ $\left[\text{JD}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{T}_0^{-1}\text{atm}\cdot 2^{18}3^{3}5^{18}1.7473380767896156 \times 10^{16}$ | IAUJ |
$6.87(13) \times 10^{103}$ $\left[\text{T}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{3}\text{H}_0^{-3}\text{au}^{3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{30}3^{12}5^{18}$ | Hubble |
$2.912(65) \times 10^{105}$ $\left[\text{T}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{3}\Omega_{\Lambda}^{-3/2}\text{H}_0^{-3}\text{au}^{3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3/2}2^{33}3^{21/2}5^{18}$ | Cosmological |
$1.818(20) \times 10^{13}$ $\left[\text{M}^{3}\right]$ | $\text{k}_\text{B}^{-1}\hbar^{3/2}\Omega_{\Lambda}^{-3/4}\text{H}_0^{-3/2}\text{au}^{3/2}\text{T}_0^{-1}\text{atm}\cdot \text{m}_\text{P}^{-3/2}\tau^{-9/4}2^{33/2}3^{21/4}5^{9}$ | CosmologicalQuantum |
$5.05332(17) \times 10^{-78}$ $\left[\text{M}^{3}\right]$ | $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\text{T}_0^{-1}\text{atm}\cdot \text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$ | Planck |
$1.134389(38) \times 10^{-79}$ $\left[\text{m}_\text{P}^{3}\right]$ | $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\text{T}_0^{-1}\text{atm}\cdot \text{m}_\text{P}^{-3}\tau^{-3}$ | PlanckGauss |
$7.07147(23) \times 10^{-83}$ $\left[\text{T}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\alpha^{3/2}\text{T}_0^{-1}\text{atm}\cdot \text{m}_\text{P}^{-3}\tau^{-3}$ | Stoney |
$3.9813973565(18) \times 10^{-6}$ $\left[\text{a}_0^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | Hartree |
$3.9813973565(18) \times 10^{-6}$ $\left[\text{a}_0^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | Rydberg |
$4.68293(15) \times 10^{-70}$ $\left[\text{L}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\alpha^{-9/2}\text{T}_0^{-1}\text{atm}\cdot \text{m}_\text{P}^{-3}\tau^{-3}$ | Schrodinger |
$6.0121180722(83) \times 10^{-19}$ $\left[\text{T}^{-3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{9}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | Electronic |
$1.5471467610(14) \times 10^{-12}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | Natural |
$1.5471467610(14) \times 10^{-12}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | NaturalGauss |
$2.4992237798(23) \times 10^{-22}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | QCD |
$2.4992237798(23) \times 10^{-22}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | QCDGauss |
$2.4992237798(23) \times 10^{-22}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3}$ | QCDoriginal |