Planck unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}\cdot \text{T}\]
\[\left[\hbar\cdot \phi\right]\]
\[h = 2\pi\hbar = \frac{2e\alpha_L}{K_J} = \frac{8\alpha}{\lambda c\mu_0K_J^2} = \frac{4\alpha_L^2}{K_J^2R_K}\]
Quantity | Product | UnitSystem |
---|---|---|
$6.62607015 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar$ | Metric |
$6.62607015 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar$ | SI2019 |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | SI1976 |
$6.626070039(82) \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{2}$ | CODATA |
$6.626068854361324 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | ${\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{2}$ | Conventional |
$6.624976848544233 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}$ | International |
$6.624811286870244 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar/1.0001900224889804$ | InternationalMean |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricTurn |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricSpatian |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricGradian |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricDegree |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricArcminute |
$6.62607015 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar$ | MetricArcsecond |
$6.756711160284094 \times 10^{-35}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}$ | Engineering |
$6.756711160284094 \times 10^{-35}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}$ | Gravitational |
$6.62607015 \times 10^{-37}$ $\left[\text{t}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar\cdot 2^{-3}5^{-3}$ | MTS |
$6.62607015 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot 2^{7}5^{7}$ | EMU |
$6.62607015 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot 2^{7}5^{7}$ | ESU |
$6.62607015 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot 2^{7}5^{7}$ | Gauss |
$6.62607015 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot 2^{7}5^{7}$ | LorentzHeaviside |
$1.5723903272322314 \times 10^{-32}$ $\left[\text{lb}\cdot \text{ft}^{2}\text{s}^{-1}\right]$ | $\hbar\cdot \text{ft}^{-2}\text{lb}^{-1}$ | FPS |
$5.8645662493151186 \times 10^{-33}$ $\left[\text{lb}\cdot \text{in}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}2^{2}3$ | IPS |
$4.887138541095932 \times 10^{-34}$ $\left[\text{lb}\cdot \text{ft}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}$ | British |
$4.887138541095932 \times 10^{-34}$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}$ | English |
$4.887128766818851 \times 10^{-34}$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}_\text{US}^{-1}\text{lb}^{-1}$ | Survey |
$2.030462715950712 \times 10^{-36}$ $\left[\text{lb}\cdot \text{mi}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot \text{ft}^{-2}\text{lb}^{-1}2^{-6}11^{-2}$ | MPH |
$2.3853852540000003 \times 10^{-36}$ $\left[\text{kg}\cdot \text{km}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot 2^{-2}3^{2}5^{-4}$ | KKH |
$6.905639683(35) \times 10^{-37}$ $\left[\text{keg}\cdot \text{nm}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{41}3^{8}5^{27}$ | Nautical |
$6.578303310(33) \times 10^{-34}$ $\left[\text{eJ} \cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-5}2^{45}5^{35}$ | Meridian |
$1.286510(28) \times 10^{-81}$ $\left[\text{M}_\odot\cdot \text{au}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ | IAU☉ |
$6.48744(14) \times 10^{-71}$ $\left[\text{ME}\cdot \text{LD}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2\cdot 3^{-3}5^{-4}/202692169$ | IAUE |
$4.97681(11) \times 10^{-80}$ $\left[\text{MJ}\cdot \text{JD}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{-5}3\cdot 5^{-10}/67336617049$ | IAUJ |
$1.775(11) \times 10^{-38}$ $\left[\text{T}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0\cdot \text{au}^{-1}\tau\cdot 2^{-11}3^{-4}5^{-6}$ | Hubble |
$1.815(27) \times 10^{-121}$ $\left[\text{M}\cdot \text{T}\right]$ | $\hbar^{2}\text{c}^{-4}\Omega_{\Lambda}\cdot \text{H}_0^{2}\text{au}^{-2}\text{m}_\text{P}^{-2}\tau\cdot 2^{-20}3^{-7}5^{-12}$ | Cosmological |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | CosmologicalQuantum |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | Planck |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | PlanckGauss |
$861.02257600(13)$ $\left[\text{M}\cdot \text{T}\right]$ | $\alpha^{-1}\tau$ | Stoney |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | Hartree |
$6.283185307179586$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $\tau$ | Rydberg |
$6.283185307179586$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $\tau$ | Schrodinger |
$861.02257600(13)$ $\left[\text{T}\right]$ | $\alpha^{-1}\tau$ | Electronic |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | Natural |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | NaturalGauss |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | QCD |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | QCDGauss |
$6.283185307179586$ $\left[\mathbb{1}\right]$ | $\tau$ | QCDoriginal |