Planck mass unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
\[m_P = \sqrt{\frac{\hbar c}{G}} = \frac{m_e}{\sqrt{\alpha_G}} = \frac{2R_\infty hg_0}{c\alpha^2\sqrt{\alpha_G}}\]
Quantity | Product | UnitSystem |
---|---|---|
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | Metric |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | SI2019 |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | SI1976 |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}\text{m}_\text{P}\cdot 2^{2}$ | CODATA |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\hbar^{-1}{\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}\text{m}_\text{P}\cdot 2^{2}$ | Conventional |
$2.176075(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\text{m}_\text{P}$ | International |
$2.176021(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}/1.0001900224889804$ | InternationalMean |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricTurn |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricSpatian |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricGradian |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricDegree |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricArcminute |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | MetricArcsecond |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | Engineering |
$2.219345(24) \times 10^{-9}$ $\left[\text{hyl}\right]$ | $\text{g}_0^{-1}\text{m}_\text{P}$ | Gravitational |
$2.176434(24) \times 10^{-11}$ $\left[\text{t}\right]$ | $\text{m}_\text{P}\cdot 2^{-3}5^{-3}$ | MTS |
$2.176434(24) \times 10^{-5}$ $\left[\text{g}\right]$ | $\text{m}_\text{P}\cdot 2^{3}5^{3}$ | EMU |
$2.176434(24) \times 10^{-5}$ $\left[\text{g}\right]$ | $\text{m}_\text{P}\cdot 2^{3}5^{3}$ | ESU |
$2.176434(24) \times 10^{-5}$ $\left[\text{g}\right]$ | $\text{m}_\text{P}\cdot 2^{3}5^{3}$ | Gauss |
$2.176434(24) \times 10^{-5}$ $\left[\text{g}\right]$ | $\text{m}_\text{P}\cdot 2^{3}5^{3}$ | LorentzHeaviside |
$4.798216(53) \times 10^{-8}$ $\left[\text{lb}\right]$ | $\text{lb}^{-1}\text{m}_\text{P}$ | FPS |
$1.242776(14) \times 10^{-10}$ $\left[\text{slinch}\right]$ | $\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}\text{m}_\text{P}\cdot 2^{-2}3^{-1}$ | IPS |
$1.491331(16) \times 10^{-9}$ $\left[\text{slug}\right]$ | $\text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}\text{m}_\text{P}$ | British |
$4.798216(53) \times 10^{-8}$ $\left[\text{lbm}\right]$ | $\text{lb}^{-1}\text{m}_\text{P}$ | English |
$4.798216(53) \times 10^{-8}$ $\left[\text{lbm}\right]$ | $\text{lb}^{-1}\text{m}_\text{P}$ | Survey |
$4.798216(53) \times 10^{-8}$ $\left[\text{lb}\right]$ | $\text{lb}^{-1}\text{m}_\text{P}$ | MPH |
$2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]$ | $\text{m}_\text{P}$ | KKH |
$2.167007(24) \times 10^{-8}$ $\left[\text{keg}\right]$ | $\text{g}_0^{3/2}\text{m}_\text{P}\cdot \text{GM}_\text{E}^{-3/2}\tau^{-3}2^{27}5^{21}$ | Nautical |
$2.167007(24) \times 10^{-8}$ $\left[\text{keg}\right]$ | $\text{g}_0^{3/2}\text{m}_\text{P}\cdot \text{GM}_\text{E}^{-3/2}\tau^{-3}2^{27}5^{21}$ | Meridian |
$1.094560(12) \times 10^{-38}$ $\left[\text{M}_\odot\right]$ | $\hbar\cdot \text{c}\cdot \text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-1}\tau^{-3}2^{28}3^{14}5^{10}$ | IAU☉ |
$3.644296(40) \times 10^{-33}$ $\left[\text{ME}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-1}\text{GM}_\text{E}^{-1}\tau^{-1}$ | IAUE |
$1.146624(13) \times 10^{-35}$ $\left[\text{MJ}\right]$ | $\hbar\cdot \text{c}\cdot \text{m}_\text{P}^{-1}\text{GM}_\text{J}^{-1}\tau^{-1}$ | IAUJ |
$2.389222(26) \times 10^{22}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1}$ | Hubble |
$8.520(63) \times 10^{-61}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-2}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{-9}3^{-7/2}5^{-6}$ | Cosmological |
$5.431(20) \times 10^{30}$ $\left[\text{M}\right]$ | $\hbar^{-1/2}\text{c}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{1/2}\tau^{1/4}2^{11/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$3.5449077018110318$ $\left[\text{M}\right]$ | $\tau^{1/2}2^{1/2}$ | Planck |
$1.0$ $\left[\text{m}_\text{P}\right]$ | $1$ | PlanckGauss |
$11.70623761437(90)$ $\left[\text{M}\right]$ | $\alpha^{-1/2}$ | Stoney |
$2.389222(26) \times 10^{22}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1}$ | Hartree |
$1.194611(13) \times 10^{22}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-2}$ | Rydberg |
$11.70623761437(90)$ $\left[\text{M}\right]$ | $\alpha^{-1/2}$ | Schrodinger |
$2.389222(26) \times 10^{22}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1}$ | Electronic |
$2.389222(26) \times 10^{22}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1}$ | Natural |
$2.389222(26) \times 10^{22}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1}$ | NaturalGauss |
$1.301211(14) \times 10^{19}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{m}_\text{P}\cdot 2^{-1}$ | QCD |
$1.301211(14) \times 10^{19}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{m}_\text{P}\cdot 2^{-1}$ | QCDGauss |
$1.301211(14) \times 10^{19}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{m}_\text{P}\cdot 2^{-1}$ | QCDoriginal |