Planck reduced unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}\]
\[\left[\hbar\right]\]
\[\hbar = \frac{h}{2\pi} = \frac{e\alpha_L}{\pi K_J} = \frac{4\alpha}{\pi\lambda c\mu_0K_J^2} = \frac{2\alpha_L}{\pi K_J^2R_K}\]
Quantity | Product | UnitSystem |
---|---|---|
$1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}$ | Metric |
$1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}$ | SI2019 |
$1.0545718176461565 \times 10^{-34}$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar\cdot \tau^{-1}$ | SI1976 |
$1.054571800(13) \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}\tau^{-1}2^{2}$ | CODATA |
$1.0545716114388567 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | ${\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}\tau^{-1}2^{2}$ | Conventional |
$1.0543978133151816 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\tau^{-1}$ | International |
$1.0543714633563797 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}/1.0001900224889804$ | InternationalMean |
$6.62607015 \times 10^{-34}$ $\left[\text{J} \cdot \text{s} \cdot \tau^{-1}\right]$ | $\hbar$ | MetricTurn |
$3.7383597584867195 \times 10^{-34}$ $\left[\text{J} \cdot \text{s} \cdot \varsigma^{-1}\right]$ | $\hbar\cdot \tau^{-1/2}2^{1/2}$ | MetricSpatian |
$1.6565175375000004 \times 10^{-36}$ $\left[\text{J} \cdot \text{s} \cdot \text{gon}^{-1}\right]$ | $\hbar\cdot 2^{-4}5^{-2}$ | MetricGradian |
$1.8405750416666666 \times 10^{-36}$ $\left[\text{J} \cdot \text{s} \cdot \text{deg}^{-1}\right]$ | $\hbar\cdot 2^{-3}3^{-2}5^{-1}$ | MetricDegree |
$3.0676250694444446 \times 10^{-38}$ $\left[\text{J} \cdot \text{s} \cdot \text{amin}^{-1}\right]$ | $\hbar\cdot 2^{-5}3^{-3}5^{-2}$ | MetricArcminute |
$5.112708449074074 \times 10^{-40}$ $\left[\text{J} \cdot \text{s} \cdot \text{asec}^{-1}\right]$ | $\hbar\cdot 2^{-7}3^{-4}5^{-3}$ | MetricArcsecond |
$1.0753639802033891 \times 10^{-35}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\cdot \text{rad}^{-1}\right]$ | $\hbar\cdot \text{g}_0^{-1}\tau^{-1}$ | Engineering |
$1.0753639802033891 \times 10^{-35}$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\tau^{-1}$ | Gravitational |
$1.0545718176461566 \times 10^{-37}$ $\left[\text{t}\cdot \text{m}^{2}\text{s}^{-1}\right]$ | $\hbar\cdot \tau^{-1}2^{-3}5^{-3}$ | MTS |
$1.0545718176461565 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}2^{7}5^{7}$ | EMU |
$1.0545718176461565 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}2^{7}5^{7}$ | ESU |
$1.0545718176461565 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}2^{7}5^{7}$ | Gauss |
$1.0545718176461565 \times 10^{-27}$ $\left[\text{erg} \cdot \text{s}\right]$ | $\hbar\cdot \tau^{-1}2^{7}5^{7}$ | LorentzHeaviside |
$2.5025369304889247 \times 10^{-33}$ $\left[\text{lb}\cdot \text{ft}^{2}\text{s}^{-1}\right]$ | $\hbar\cdot \text{ft}^{-2}\text{lb}^{-1}\tau^{-1}$ | FPS |
$9.333747076683978 \times 10^{-34}$ $\left[\text{lb}\cdot \text{in}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau^{-1}2^{2}3$ | IPS |
$7.778122563903315 \times 10^{-35}$ $\left[\text{lb}\cdot \text{ft}\cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau^{-1}$ | British |
$7.778122563903315 \times 10^{-35}$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\cdot \text{rad}^{-1}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau^{-1}$ | English |
$7.77810700765819 \times 10^{-35}$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\cdot \text{rad}^{-1}\right]$ | $\hbar\cdot \text{g}_0^{-1}\text{ft}_\text{US}^{-1}\text{lb}^{-1}\tau^{-1}$ | Survey |
$3.2315817800735083 \times 10^{-37}$ $\left[\text{lb}\cdot \text{mi}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot \text{ft}^{-2}\text{lb}^{-1}\tau^{-1}2^{-6}11^{-2}$ | MPH |
$3.7964585435261634 \times 10^{-37}$ $\left[\text{kg}\cdot \text{km}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot \tau^{-1}2^{-2}3^{2}5^{-4}$ | KKH |
$1.0990666907(55) \times 10^{-37}$ $\left[\text{keg}\cdot \text{nm}^{2}\text{h}^{-1}\right]$ | $\hbar\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-6}2^{41}3^{8}5^{27}$ | Nautical |
$1.0469694890(53) \times 10^{-34}$ $\left[\text{eJ} \cdot \text{s}\right]$ | $\hbar\cdot \text{g}_0^{5/2}\text{GM}_\text{E}^{-5/2}\tau^{-6}2^{45}5^{35}$ | Meridian |
$2.047544(45) \times 10^{-82}$ $\left[\text{M}_\odot\cdot \text{au}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-4}2^{35}3^{17}5^{12}$ | IAU☉ |
$1.032508(23) \times 10^{-71}$ $\left[\text{ME}\cdot \text{LD}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-2}2\cdot 3^{-3}5^{-4}/202692169$ | IAUE |
$7.92084(17) \times 10^{-81}$ $\left[\text{MJ}\cdot \text{JD}^{2}\text{D}^{-1}\right]$ | $\hbar^{2}\text{c}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-2}2^{-5}3\cdot 5^{-10}/67336617049$ | IAUJ |
$2.824(18) \times 10^{-39}$ $\left[\text{T}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0\cdot \text{au}^{-1}2^{-11}3^{-4}5^{-6}$ | Hubble |
$2.888(43) \times 10^{-122}$ $\left[\text{M}\cdot \text{T}\right]$ | $\hbar^{2}\text{c}^{-4}\Omega_{\Lambda}\cdot \text{H}_0^{2}\text{au}^{-2}\text{m}_\text{P}^{-2}2^{-20}3^{-7}5^{-12}$ | Cosmological |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | CosmologicalQuantum |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Planck |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | PlanckGauss |
$137.035999084(21)$ $\left[\text{M}\cdot \text{T}\right]$ | $\alpha^{-1}$ | Stoney |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Hartree |
$1.0$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $1$ | Rydberg |
$1.0$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ | $1$ | Schrodinger |
$137.035999084(21)$ $\left[\text{T}\right]$ | $\alpha^{-1}$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | NaturalGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCD |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCDoriginal |