proton mass unit

data derived with UnitSystems.jl DOI

\[\text{M}\]

\[\left[\text{m}_\text{e}\right]\]

\[m_p = \mu_{pu} m_u = \mu_{pu}\frac{M_u}{N_A} = \mu_{pe}m_e = \mu_{pe}\frac{2R_\infty hg_0}{c\alpha^2} = m_P\mu_{pe}\sqrt{\alpha_G}\]

Quantity Product UnitSystem
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ Metric
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ SI2019
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ SI1976
$1.672621896(21) \times 10^{-27}$ $\left[\text{kg}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{3}$ CODATA
$1.67262159664(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{3}$ Conventional
$1.67234594111(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2$ International
$1.67230414830(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2/1.0001900224889804$ InternationalMean
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricTurn
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricSpatian
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricGradian
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricDegree
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricArcminute
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ MetricArcsecond
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ Engineering
$1.70559969377(53) \times 10^{-28}$ $\left[\text{hyl}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{g}_0^{-1}2$ Gravitational
$1.67262192369(52) \times 10^{-30}$ $\left[\text{t}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{-2}5^{-3}$ MTS
$1.67262192369(52) \times 10^{-24}$ $\left[\text{g}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{4}5^{3}$ EMU
$1.67262192369(52) \times 10^{-24}$ $\left[\text{g}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{4}5^{3}$ ESU
$1.67262192369(52) \times 10^{-24}$ $\left[\text{g}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{4}5^{3}$ Gauss
$1.67262192369(52) \times 10^{-24}$ $\left[\text{g}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{4}5^{3}$ LorentzHeaviside
$3.6875001308(12) \times 10^{-27}$ $\left[\text{lb}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{lb}^{-1}2$ FPS
$9.5509173185(30) \times 10^{-30}$ $\left[\text{slinch}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2^{-1}3^{-1}$ IPS
$1.14611007822(36) \times 10^{-28}$ $\left[\text{slug}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{g}_0^{-1}\text{ft}\cdot \text{lb}^{-1}2$ British
$3.6875001308(12) \times 10^{-27}$ $\left[\text{lbm}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{lb}^{-1}2$ English
$3.6875001308(12) \times 10^{-27}$ $\left[\text{lbm}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{lb}^{-1}2$ Survey
$3.6875001308(12) \times 10^{-27}$ $\left[\text{lb}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{lb}^{-1}2$ MPH
$1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ KKH
$1.6653767744(50) \times 10^{-27}$ $\left[\text{keg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ Nautical
$1.6653767744(50) \times 10^{-27}$ $\left[\text{keg}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{g}_0^{3/2}\text{GM}_\text{E}^{-3/2}\tau^{-3}2^{28}5^{21}$ Meridian
$8.41186(19) \times 10^{-58}$ $\left[\text{M}_\odot\right]$ $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{29}3^{14}5^{10}$ IAU☉
$2.800695(62) \times 10^{-52}$ $\left[\text{ME}\right]$ $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2$ IAUE
$8.81197(19) \times 10^{-55}$ $\left[\text{MJ}\right]$ $\hbar^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2$ IAUJ
$1836.15267343(11)$ $\left[\mathbb{1}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}$ Hubble
$6.548(49) \times 10^{-80}$ $\left[\text{M}\right]$ $\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-8}3^{-7/2}5^{-6}$ Cosmological
$4.174(15) \times 10^{11}$ $\left[\text{M}\right]$ $\hbar^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{13/2}3^{7/4}5^{3}$ CosmologicalQuantum
$2.724314(30) \times 10^{-19}$ $\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$ Planck
$7.685149(85) \times 10^{-20}$ $\left[\text{m}_\text{P}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-1}2$ PlanckGauss
$8.996418(99) \times 10^{-19}$ $\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-1}2$ Stoney
$1836.15267343(11)$ $\left[\mathbb{1}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}$ Hartree
$918.076336716(55)$ $\left[\text{M}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{-1}$ Rydberg
$8.996418(99) \times 10^{-19}$ $\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \text{m}_\text{P}^{-1}2$ Schrodinger
$1836.15267343(11)$ $\left[\mathbb{1}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}$ Electronic
$1836.15267343(11)$ $\left[\mathbb{1}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}$ Natural
$1836.15267343(11)$ $\left[\mathbb{1}\right]$ $\mu_\text{eu}^{-1}\mu_\text{pu}$ NaturalGauss
$1.0$ $\left[\text{m}_\text{p}\right]$ $1$ QCD
$1.0$ $\left[\text{m}_\text{p}\right]$ $1$ QCDGauss
$1.0$ $\left[\text{m}_\text{p}\right]$ $1$ QCDoriginal