pounds per square inch unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}^{-2}\]
\[\left[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Metric |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | SI2019 |
$6894.75729316836$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | SI1976 |
$6894.757178(86)$ $\left[\text{Pa}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{6}3^{2}$ | CODATA |
$6894.755944991535$ $\left[\text{Pa}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{6}3^{2}$ | Conventional |
$6893.619658338794$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2^{4}3^{2}$ | International |
$6893.447383138961$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}/1.0001900224889804$ | InternationalMean |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricTurn |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricSpatian |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricGradian |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricDegree |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricArcminute |
$6894.75729316836$ $\left[\text{Pa}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricArcsecond |
$703.0695796391592$ $\left[\text{kgf}\cdot \text{m}^{-2}\right]$ | $\text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Engineering |
$703.0695796391592$ $\left[\text{kgf}\cdot \text{m}^{-2}\right]$ | $\text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Gravitational |
$6.894757293168361$ $\left[\text{pz}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2\cdot 3^{2}5^{-3}$ | MTS |
$68947.5729316836$ $\left[\text{Ba}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | EMU |
$68947.5729316836$ $\left[\text{Ba}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | ESU |
$68947.5729316836$ $\left[\text{Ba}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | Gauss |
$68947.5729316836$ $\left[\text{Ba}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | LorentzHeaviside |
$4633.062992125983$ $\left[\text{pdl} \cdot \text{ft}^{-2}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{4}3^{2}$ | FPS |
$1.0$ $\left[\text{lb}\cdot \text{in}^{-2}\right]$ | $1$ | IPS |
$144.0$ $\left[\text{lb}\cdot \text{ft}^{-2}\right]$ | $2^{4}3^{2}$ | British |
$144.0$ $\left[\text{lbf}\cdot \text{ft}^{-2}\right]$ | $2^{4}3^{2}$ | English |
$144.00057600172795$ $\left[\text{lbf}\cdot \text{ft}^{-2}\right]$ | $\text{ft}^{-2}\text{ft}_\text{US}^{2}2^{4}3^{2}$ | Survey |
$3.170349408755905 \times 10^{14}$ $\left[\text{lb}\cdot \text{mi}^{-1}\text{h}^{-2}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{17}3^{7}5^{5}11$ | MPH |
$8.935605451946194 \times 10^{13}$ $\left[\text{kg}\cdot \text{km}^{-1}\text{h}^{-2}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{15}3^{6}5^{7}$ | KKH |
$1.6499598278(33) \times 10^{14}$ $\left[\text{keg}\cdot \text{nm}^{-1}\text{h}^{-2}\right]$ | $\text{g}_0^{2}\text{ft}^{-2}\text{lb}\cdot \text{GM}_\text{E}^{-1}\tau^{-2}2^{34}3^{3}5^{23}$ | Nautical |
$6874.832616(14)$ $\left[\text{ePa}\right]$ | $\text{g}_0^{2}\text{ft}^{-2}\text{lb}\cdot \text{GM}_\text{E}^{-1}\tau^{-2}2^{22}3^{2}5^{14}$ | Meridian |
$3.872274(85) \times 10^{-6}$ $\left[\text{M}_\odot\cdot \text{au}^{-1}\text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{au}^{-2}\text{ft}^{-2}\text{lb}\cdot \text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{46}3^{22}5^{14}$ | IAU☉ |
$0.003312812(73)$ $\left[\text{ME}\cdot \text{LD}^{-1}\text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{21}3^{11}5^{7}14237$ | IAUE |
$0.02110905(47)$ $\left[\text{MJ}\cdot \text{JD}^{-1}\text{D}^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{24}3^{9}5^{10}259493$ | IAUJ |
$2.152(40) \times 10^{95}$ $\left[\text{T}^{-3}\right]$ | $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0^{-3}\text{g}_0\cdot \text{au}^{3}\text{ft}^{-2}\text{lb}\cdot \tau^{-3}2^{33}3^{14}5^{18}$ | Hubble |
$3.255(48) \times 10^{14}$ $\left[\text{M}\cdot \text{T}^{-3}\right]$ | $\hbar\cdot \text{c}^{-1}\Omega_{\Lambda}^{-1}\text{H}_0^{-2}\text{g}_0\cdot \text{au}^{2}\text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1}2^{28}3^{9}5^{12}$ | Cosmological |
$1.295(19) \times 10^{13}$ $\left[\text{M}^{4}\right]$ | $\hbar\cdot \text{c}^{-1}\Omega_{\Lambda}^{-1}\text{H}_0^{-2}\text{g}_0\cdot \text{au}^{2}\text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-2}2^{26}3^{9}5^{12}$ | CosmologicalQuantum |
$2.35007(10) \times 10^{-108}$ $\left[\text{M}^{4}\right]$ | $\hbar^{3}\text{c}^{-5}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-4}\tau^{-1}2^{6}3^{2}$ | Planck |
$1.488202(66) \times 10^{-110}$ $\left[\text{m}_\text{P}^{4}\right]$ | $\hbar^{3}\text{c}^{-5}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-4}\tau^{-3}2^{4}3^{2}$ | PlanckGauss |
$1.085994(48) \times 10^{-112}$ $\left[\text{M}\cdot \text{T}^{-3}\right]$ | $\hbar^{3}\text{c}^{-5}\alpha\cdot \text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-4}\tau^{-3}2^{4}3^{2}$ | Stoney |
$2.3434803762(11) \times 10^{-10}$ $\left[\text{a}_0^{-5}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | Hartree |
$4.6869607523(22) \times 10^{-10}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}2\cdot 3^{2}$ | Rydberg |
$1.350531(60) \times 10^{-95}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]$ | $\hbar^{3}\text{c}^{-5}\alpha^{-7}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-4}\tau^{-3}2^{4}3^{2}$ | Schrodinger |
$1.8844471311(32) \times 10^{-27}$ $\left[\text{T}^{-3}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | Electronic |
$4.8493995628(59) \times 10^{-21}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | Natural |
$4.8493995628(59) \times 10^{-21}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | NaturalGauss |
$4.2663139547(53) \times 10^{-34}$ $\left[\text{m}_\text{p}^{4}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | QCD |
$4.2663139547(53) \times 10^{-34}$ $\left[\text{m}_\text{p}^{4}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | QCDGauss |
$4.2663139547(53) \times 10^{-34}$ $\left[\text{m}_\text{p}^{4}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2}$ | QCDoriginal |