Rankine unit
data derived with UnitSystems.jl
\[\Theta\]
\[\left[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Metric |
$0.55555555536(17)$ $\left[\text{K}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}3^{-2}5^{4}$ | SI2019 |
$0.5555650851752184$ $\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot 3^{-2}5/8.31432$ | SI1976 |
$0.55555574(32)$ $\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{R}_\text{u}^{-1}3^{-2}5$ | CODATA |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Conventional |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | International |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | InternationalMean |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricTurn |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricSpatian |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricGradian |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricDegree |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricArcminute |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MetricArcsecond |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Engineering |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Gravitational |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | MTS |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | EMU |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | ESU |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Gauss |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | LorentzHeaviside |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | FPS |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | IPS |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | British |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | English |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | Survey |
$1.0$ $\left[{^\circ}\text{R}\right]$ | $1$ | MPH |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | KKH |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Nautical |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | Meridian |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | IAU☉ |
$0.5555555555555557$ $\left[\text{K}\right]$ | $3^{-2}51$ | IAUE |
$0.5555555555555556$ $\left[\text{K}\right]$ | $3^{-2}5$ | IAUJ |
$9.36872251150(27) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}$ | Hubble |
$3.341(25) \times 10^{-93}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-5}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\text{m}_\text{P}^{-2}\tau^{1/2}2^{-5}3^{-11/2}5^{-2}$ | Cosmological |
$0.021298(79)$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{1/2}\text{c}^{-2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{1/4}2^{19/2}3^{-1/4}5^{7}$ | CosmologicalQuantum |
$1.390045(15) \times 10^{-32}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{9/2}3^{-2}5^{4}$ | Planck |
$3.921244(43) \times 10^{-33}$ $\left[\text{m}_\text{P}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}3^{-2}5^{4}$ | PlanckGauss |
$4.590301(51) \times 10^{-32}$ $\left[\text{M}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}3^{-2}5^{4}$ | Stoney |
$1.75933975687(54) \times 10^{-6}$ $\left[\text{a}_0^{-2}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}$ | Hartree |
$3.5186795137(11) \times 10^{-6}$ $\left[\text{T}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{4}3^{-2}5^{4}$ | Rydberg |
$8.620065(95) \times 10^{-28}$ $\left[\text{T}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-9/2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}3^{-2}5^{4}$ | Schrodinger |
$9.36872251150(27) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}$ | Electronic |
$9.36872251150(27) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}$ | Natural |
$9.36872251150(27) \times 10^{-11}$ $\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}$ | NaturalGauss |
$5.10236574935(27) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}3^{-2}5^{4}$ | QCD |
$5.10236574935(27) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}3^{-2}5^{4}$ | QCDGauss |
$5.10236574935(27) \times 10^{-14}$ $\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}3^{-2}5^{4}$ | QCDoriginal |