reyn unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}^{-2}\text{T}\]
\[\left[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Metric |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | SI2019 |
$6894.75729316836$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-1}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | SI1976 |
$6894.757178(86)$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{6}3^{2}$ | CODATA |
$6894.755944991535$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{6}3^{2}$ | Conventional |
$6893.619658338794$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2^{4}3^{2}$ | International |
$6893.447383138961$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}/1.0001900224889801$ | InternationalMean |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricTurn |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricSpatian |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricGradian |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricDegree |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricArcminute |
$6894.75729316836$ $\left[\text{Pa} \cdot \text{s}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | MetricArcsecond |
$703.0695796391592$ $\left[\text{kgf}\cdot \text{m}^{-2}\text{s}\right]$ | $\text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Engineering |
$703.0695796391592$ $\left[\text{kgf}\cdot \text{m}^{-2}\text{s}\right]$ | $\text{ft}^{-2}\text{lb}\cdot 2^{4}3^{2}$ | Gravitational |
$6.894757293168361$ $\left[\text{t}\cdot \text{m}^{-1}\text{s}^{-1}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2\cdot 3^{2}5^{-3}$ | MTS |
$68947.5729316836$ $\left[\text{P}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | EMU |
$68947.5729316836$ $\left[\text{P}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | ESU |
$68947.5729316836$ $\left[\text{P}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | Gauss |
$68947.5729316836$ $\left[\text{P}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{5}3^{2}5$ | LorentzHeaviside |
$4633.062992125983$ $\left[\text{lb}\cdot \text{ft}^{-1}\text{s}^{-1}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{4}3^{2}$ | FPS |
$1.0$ $\left[\text{lb}\cdot \text{in}^{-2}\text{s}\right]$ | $1$ | IPS |
$144.0$ $\left[\text{lb}\cdot \text{ft}^{-2}\text{s}\right]$ | $2^{4}3^{2}$ | British |
$144.0$ $\left[\text{lbf}\cdot \text{ft}^{-2}\text{s}\right]$ | $2^{4}3^{2}$ | English |
$144.00057600172795$ $\left[\text{lbf}\cdot \text{ft}^{-2}\text{s}\right]$ | $\text{ft}^{-2}\text{ft}_\text{US}^{2}2^{4}3^{2}$ | Survey |
$8.80652613543307 \times 10^{10}$ $\left[\text{lb}\cdot \text{mi}^{-1}\text{h}^{-1}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{13}3^{5}5^{3}11$ | MPH |
$2.4821126255406094 \times 10^{10}$ $\left[\text{kg}\cdot \text{km}^{-1}\text{h}^{-1}\right]$ | $\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot 2^{11}3^{4}5^{5}$ | KKH |
$4.5832217438(92) \times 10^{10}$ $\left[\text{keg}\cdot \text{nm}^{-1}\text{h}^{-1}\right]$ | $\text{g}_0^{2}\text{ft}^{-2}\text{lb}\cdot \text{GM}_\text{E}^{-1}\tau^{-2}2^{30}3\cdot 5^{21}$ | Nautical |
$6874.832616(14)$ $\left[\text{ePa} \cdot \text{s}\right]$ | $\text{g}_0^{2}\text{ft}^{-2}\text{lb}\cdot \text{GM}_\text{E}^{-1}\tau^{-2}2^{22}3^{2}5^{14}$ | Meridian |
$4.481799(99) \times 10^{-11}$ $\left[\text{M}_\odot\cdot \text{au}^{-1}\text{D}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{au}^{-2}\text{ft}^{-2}\text{lb}\cdot \text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{39}3^{19}5^{12}$ | IAU☉ |
$3.834273(85) \times 10^{-8}$ $\left[\text{ME}\cdot \text{LD}^{-1}\text{D}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{14}3^{8}5^{5}14237$ | IAUE |
$2.443178(54) \times 10^{-7}$ $\left[\text{MJ}\cdot \text{JD}^{-1}\text{D}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{17}3^{6}5^{8}259493$ | IAUJ |
$4.719(59) \times 10^{77}$ $\left[\text{T}^{-2}\right]$ | $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0^{-2}\text{g}_0\cdot \text{au}^{2}\text{ft}^{-2}\text{lb}\cdot \tau^{-2}2^{23}3^{10}5^{12}$ | Hubble |
$0.0002047(15)$ $\left[\text{M}\cdot \text{T}^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{g}_0\cdot \text{au}\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{-1/2}2^{17}3^{11/2}5^{6}$ | Cosmological |
$4.423(49) \times 10^{25}$ $\left[\text{M}^{3}\right]$ | $\hbar^{1/2}\Omega_{\Lambda}^{-3/4}\text{H}_0^{-3/2}\text{g}_0\cdot \text{au}^{3/2}\text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-3/2}\tau^{-5/4}2^{41/2}3^{29/4}5^{9}$ | CosmologicalQuantum |
$1.229667(41) \times 10^{-65}$ $\left[\text{M}^{3}\right]$ | $\hbar^{2}\text{c}^{-3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-3}\tau^{-1/2}2^{11/2}3^{2}$ | Planck |
$2.760404(91) \times 10^{-67}$ $\left[\text{m}_\text{P}^{3}\right]$ | $\hbar^{2}\text{c}^{-3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-3}\tau^{-2}2^{4}3^{2}$ | PlanckGauss |
$2.358063(78) \times 10^{-68}$ $\left[\text{M}\cdot \text{T}^{-2}\right]$ | $\hbar^{2}\text{c}^{-3}\alpha^{1/2}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-3}\tau^{-2}2^{4}3^{2}$ | Stoney |
$9.6882697134(45) \times 10^{6}$ $\left[\text{a}_0^{-3}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | Hartree |
$9.6882697134(45) \times 10^{6}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | Rydberg |
$1.139538(38) \times 10^{-57}$ $\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ | $\hbar^{2}\text{c}^{-3}\alpha^{-9/2}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \text{m}_\text{P}^{-3}\tau^{-2}2^{4}3^{2}$ | Schrodinger |
$0.00020048083778(25)$ $\left[\text{T}^{-2}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | Electronic |
$3.7648025968(35)$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | Natural |
$3.7648025968(35)$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | NaturalGauss |
$6.0815718414(57) \times 10^{-10}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | QCD |
$6.0815718414(57) \times 10^{-10}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | QCDGauss |
$6.0815718414(57) \times 10^{-10}$ $\left[\text{m}_\text{p}^{3}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2}$ | QCDoriginal |