Rydberg unit
data derived with UnitSystems.jl
\[\text{L}^{-1}\]
\[\left[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}\right]\]
\[R_\infty = \frac{E_h}{2hc} = \frac{m_e c\alpha^2}{2hg_0} = \frac{\alpha}{4\pi a_0} = \frac{m_e r_e c}{2ha_0g_0} = \frac{\alpha^2m_ec}{4\pi\hbar g_0} = \frac{m_Pc\alpha^2\sqrt{\alpha_G}}{2hg_0}\]
Quantity | Product | UnitSystem |
---|---|---|
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | Metric |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | SI2019 |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | SI1976 |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | CODATA |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | Conventional |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | International |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | InternationalMean |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricTurn |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricSpatian |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricGradian |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricDegree |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricArcminute |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MetricArcsecond |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | Engineering |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | Gravitational |
$1.0973731568160(21) \times 10^{7}$ $\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}$ | MTS |
$109737.31568160(21)$ $\left[\text{cm}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{-2}5^{-2}$ | EMU |
$109737.31568160(21)$ $\left[\text{cm}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{-2}5^{-2}$ | ESU |
$109737.31568160(21)$ $\left[\text{cm}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{-2}5^{-2}$ | Gauss |
$109737.31568160(21)$ $\left[\text{cm}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{-2}5^{-2}$ | LorentzHeaviside |
$3.3447933819752(64) \times 10^{6}$ $\left[\text{ft}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}$ | FPS |
$278732.78183127(53)$ $\left[\text{in}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}\cdot 2^{-2}3^{-1}$ | IPS |
$3.3447933819752(64) \times 10^{6}$ $\left[\text{ft}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}$ | British |
$3.3447933819752(64) \times 10^{6}$ $\left[\text{ft}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}$ | English |
$3.3448000715753(64) \times 10^{6}$ $\left[\text{ft}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}_\text{US}$ | Survey |
$1.7660509056829(34) \times 10^{10}$ $\left[\text{mi}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{ft}\cdot 2^{5}3\cdot 5\cdot 11$ | MPH |
$1.0973731568160(21) \times 10^{10}$ $\left[\text{km}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{3}5^{3}$ | KKH |
$2.0351152088(20) \times 10^{10}$ $\left[\text{nm}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2^{-5}3^{-3}5^{-2}$ | Nautical |
$1.0989622127(11) \times 10^{7}$ $\left[\text{em}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2^{-9}5^{-7}$ | Meridian |
$1.641646876230(33) \times 10^{18}$ $\left[\text{au}^{-1}\right]$ | $\text{R}_{\infty}\cdot \text{au}$ | IAU☉ |
$4.2182914410692(81) \times 10^{15}$ $\left[\text{LD}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{3}3^{3}5^{3}14237$ | IAUE |
$8.542819577450(16) \times 10^{18}$ $\left[\text{JD}^{-1}\right]$ | $\text{R}_{\infty}\cdot 2^{6}3\cdot 5^{6}259493$ | IAUJ |
$1.5004(93) \times 10^{33}$ $\left[\text{T}^{-1}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \text{H}_0^{-1}\text{au}\cdot \tau^{-1}2^{10}3^{4}5^{6}$ | Hubble |
$5.232(39) \times 10^{33}$ $\left[\text{T}^{-1}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \tau^{-1/2}2^{11}3^{7/2}5^{6}$ | Cosmological |
$963.3(36)$ $\left[\text{M}\right]$ | $\hbar^{1/2}\text{R}_{\infty}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{1/2}\text{m}_\text{P}^{-1/2}\tau^{-3/4}2^{11/2}3^{7/4}5^{3}$ | CosmologicalQuantum |
$6.287373(69) \times 10^{-28}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ | Planck |
$1.773635(20) \times 10^{-28}$ $\left[\text{m}_\text{P}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \text{m}_\text{P}^{-1}\tau^{-1}$ | PlanckGauss |
$1.515120(17) \times 10^{-29}$ $\left[\text{T}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ | Stoney |
$0.000580704866443(89)$ $\left[\text{a}_0^{-1}\right]$ | $\alpha\cdot \tau^{-1}2^{-1}$ | Hartree |
$0.000580704866443(89)$ $\left[\text{a}_0^{-1}\right]$ | $\alpha\cdot \tau^{-1}2^{-1}$ | Rydberg |
$2.845223(31) \times 10^{-25}$ $\left[\text{L}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\text{m}_\text{P}^{-1}\tau^{-1}$ | Schrodinger |
$3.0923320715(14) \times 10^{-8}$ $\left[\text{T}^{-1}\right]$ | $\alpha^{3}\tau^{-1}2^{-1}$ | Electronic |
$4.2376081491(13) \times 10^{-6}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}\tau^{-1}2^{-1}$ | Natural |
$4.2376081491(13) \times 10^{-6}$ $\left[\mathbb{1}\right]$ | $\alpha^{2}\tau^{-1}2^{-1}$ | NaturalGauss |
$2.30787352841(72) \times 10^{-9}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCD |
$2.30787352841(72) \times 10^{-9}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCDGauss |
$2.30787352841(72) \times 10^{-9}$ $\left[\text{m}_\text{p}\right]$ | $\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ | QCDoriginal |