slinch unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | Metric |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | SI2019 |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | SI1976 |
$175.1268323(22)$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}2^{4}3$ | CODATA |
$175.12680100278502$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot {\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}2^{4}3$ | Conventional |
$175.0979393218054$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \Omega_\text{it}\cdot \text{V}_\text{it}^{-2}2^{2}3$ | International |
$175.09356353172964$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3/1.0001900224889804$ | InternationalMean |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricTurn |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricSpatian |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricGradian |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricDegree |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricArcminute |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | MetricArcsecond |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | Engineering |
$17.857967322834646$ $\left[\text{hyl}\right]$ | $\text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | Gravitational |
$0.17512683524647638$ $\left[\text{t}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{-1}3\cdot 5^{-3}$ | MTS |
$175126.83524647637$ $\left[\text{g}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{5}3\cdot 5^{3}$ | EMU |
$175126.83524647637$ $\left[\text{g}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{5}3\cdot 5^{3}$ | ESU |
$175126.83524647637$ $\left[\text{g}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{5}3\cdot 5^{3}$ | Gauss |
$175126.83524647637$ $\left[\text{g}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{5}3\cdot 5^{3}$ | LorentzHeaviside |
$386.0885826771653$ $\left[\text{lb}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{2}3$ | FPS |
$1.0$ $\left[\text{slinch}\right]$ | $1$ | IPS |
$12.0$ $\left[\text{slug}\right]$ | $2^{2}3$ | British |
$386.0885826771653$ $\left[\text{lbm}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{2}3$ | English |
$386.0885826771653$ $\left[\text{lbm}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{2}3$ | Survey |
$386.0885826771653$ $\left[\text{lb}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}2^{2}3$ | MPH |
$175.12683524647636$ $\left[\text{kg}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{2}3$ | KKH |
$174.36825374(52)$ $\left[\text{keg}\right]$ | $\text{g}_0^{5/2}\text{ft}^{-1}\text{lb}\cdot \text{GM}_\text{E}^{-3/2}\tau^{-3}2^{29}3\cdot 5^{21}$ | Nautical |
$174.36825374(52)$ $\left[\text{keg}\right]$ | $\text{g}_0^{5/2}\text{ft}^{-1}\text{lb}\cdot \text{GM}_\text{E}^{-3/2}\tau^{-3}2^{29}3\cdot 5^{21}$ | Meridian |
$8.80738(19) \times 10^{-29}$ $\left[\text{M}_\odot\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{au}^{-3}\text{ft}^{-1}\text{lb}\cdot \text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{30}3^{15}5^{10}$ | IAU☉ |
$2.932384(65) \times 10^{-23}$ $\left[\text{ME}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}\tau^{-1}2^{2}3$ | IAUE |
$9.22631(20) \times 10^{-26}$ $\left[\text{MJ}\right]$ | $\hbar\cdot \text{c}\cdot \text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}\tau^{-1}2^{2}3$ | IAUJ |
$1.92248829321(59) \times 10^{32}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | Hubble |
$6.855(51) \times 10^{-51}$ $\left[\text{M}\right]$ | $\hbar\cdot \text{c}^{-2}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{g}_0\cdot \text{au}^{-1}\text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-2}\tau^{1/2}2^{-7}3^{-5/2}5^{-6}$ | Cosmological |
$4.370(16) \times 10^{40}$ $\left[\text{M}\right]$ | $\hbar^{-1/2}\text{c}\cdot \Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{g}_0\cdot \text{au}^{1/2}\text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-1/2}\tau^{1/4}2^{15/2}3^{11/4}5^{3}$ | CosmologicalQuantum |
$2.852411(31) \times 10^{10}$ $\left[\text{M}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-1}\tau^{1/2}2^{5/2}3$ | Planck |
$8.046503(89) \times 10^{9}$ $\left[\text{m}_\text{P}\right]$ | $\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-1}2^{2}3$ | PlanckGauss |
$9.41943(10) \times 10^{10}$ $\left[\text{M}\right]$ | $\alpha^{-1/2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-1}2^{2}3$ | Stoney |
$1.92248829321(59) \times 10^{32}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | Hartree |
$9.6124414661(29) \times 10^{31}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 3$ | Rydberg |
$9.41943(10) \times 10^{10}$ $\left[\text{M}\right]$ | $\alpha^{-1/2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot \text{m}_\text{P}^{-1}2^{2}3$ | Schrodinger |
$1.92248829321(59) \times 10^{32}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | Electronic |
$1.92248829321(59) \times 10^{32}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | Natural |
$1.92248829321(59) \times 10^{32}$ $\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | NaturalGauss |
$1.04701984809(33) \times 10^{29}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | QCD |
$1.04701984809(33) \times 10^{29}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | QCDGauss |
$1.04701984809(33) \times 10^{29}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3$ | QCDoriginal |