solar mass unit
data derived with UnitSystems.jl
\[\text{M}\]
\[\left[\text{m}_\text{e}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | Metric |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | SI2019 |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | SI1976 |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-2}\text{c}^{-1}\text{au}^{3}\text{R}_\text{K}^{-1}\text{K}_\text{J}^{-2}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-26}3^{-14}5^{-10}$ | CODATA |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-2}\text{c}^{-1}\text{au}^{3}{\text{R}_\text{K}^{90}}^{-1}{\text{K}_\text{J}^{90}}^{-2}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-26}3^{-14}5^{-10}$ | Conventional |
$1.988081(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | International |
$1.988031(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}/1.0001900224889804$ | InternationalMean |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricTurn |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricSpatian |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricGradian |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricDegree |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricArcminute |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MetricArcsecond |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | Engineering |
$2.027613(45) \times 10^{29}$ $\left[\text{hyl}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{g}_0^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | Gravitational |
$1.988409(44) \times 10^{27}$ $\left[\text{t}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-31}3^{-14}5^{-13}$ | MTS |
$1.988409(44) \times 10^{33}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-25}3^{-14}5^{-7}$ | EMU |
$1.988409(44) \times 10^{33}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-25}3^{-14}5^{-7}$ | ESU |
$1.988409(44) \times 10^{33}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-25}3^{-14}5^{-7}$ | Gauss |
$1.988409(44) \times 10^{33}$ $\left[\text{g}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-25}3^{-14}5^{-7}$ | LorentzHeaviside |
$4.383692(97) \times 10^{30}$ $\left[\text{lb}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | FPS |
$1.135411(25) \times 10^{28}$ $\left[\text{slinch}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{g}_0^{-1}\text{au}^{3}\text{ft}\cdot \text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-30}3^{-15}5^{-10}$ | IPS |
$1.362493(30) \times 10^{29}$ $\left[\text{slug}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{g}_0^{-1}\text{au}^{3}\text{ft}\cdot \text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | British |
$4.383692(97) \times 10^{30}$ $\left[\text{lbm}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | English |
$4.383692(97) \times 10^{30}$ $\left[\text{lbm}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | Survey |
$4.383692(97) \times 10^{30}$ $\left[\text{lb}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{lb}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | MPH |
$1.988409(44) \times 10^{30}$ $\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ | KKH |
$1.979796(44) \times 10^{30}$ $\left[\text{keg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{g}_0^{3/2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\text{GM}_\text{E}^{-3/2}2^{-1}3^{-14}5^{11}$ | Nautical |
$1.979796(44) \times 10^{30}$ $\left[\text{keg}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{g}_0^{3/2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\text{GM}_\text{E}^{-3/2}2^{-1}3^{-14}5^{11}$ | Meridian |
$1.0$ $\left[\text{M}_\odot\right]$ | $1$ | IAU☉ |
$332946.04409(67)$ $\left[\text{ME}\right]$ | $\text{au}^{3}\text{k}_\text{G}^{2}\text{GM}_\text{E}^{-1}\tau^{2}2^{-28}3^{-14}5^{-10}$ | IAUE |
$1047.565484(74)$ $\left[\text{MJ}\right]$ | $\text{au}^{3}\text{k}_\text{G}^{2}\text{GM}_\text{J}^{-1}\tau^{2}2^{-28}3^{-14}5^{-10}$ | IAUJ |
$2.182814(48) \times 10^{60}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | Hubble |
$7.784(58) \times 10^{-23}$ $\left[\text{M}\right]$ | $\text{c}^{-3}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{2}\text{k}_\text{G}^{2}\tau^{7/2}2^{-37}3^{-35/2}5^{-16}$ | Cosmological |
$4.962(18) \times 10^{68}$ $\left[\text{M}\right]$ | $\hbar^{-3/2}\Omega_{\Lambda}^{-1/4}\text{H}_0^{-1/2}\text{au}^{7/2}\text{k}_\text{G}^{2}\text{m}_\text{P}^{3/2}\tau^{13/4}2^{-45/2}3^{-49/4}5^{-7}$ | CosmologicalQuantum |
$3.238659(36) \times 10^{38}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}\cdot \tau^{7/2}2^{-55/2}3^{-14}5^{-10}$ | Planck |
$9.13609(10) \times 10^{37}$ $\left[\text{m}_\text{P}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}\cdot \tau^{3}2^{-28}3^{-14}5^{-10}$ | PlanckGauss |
$1.069492(12) \times 10^{39}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{-1}\alpha^{-1/2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}\cdot \tau^{3}2^{-28}3^{-14}5^{-10}$ | Stoney |
$2.182814(48) \times 10^{60}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | Hartree |
$1.091407(24) \times 10^{60}$ $\left[\text{M}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-30}3^{-14}5^{-10}$ | Rydberg |
$1.069492(12) \times 10^{39}$ $\left[\text{M}\right]$ | $\hbar^{-1}\text{c}^{-1}\alpha^{-1/2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}\cdot \tau^{3}2^{-28}3^{-14}5^{-10}$ | Schrodinger |
$2.182814(48) \times 10^{60}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | Electronic |
$2.182814(48) \times 10^{60}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | Natural |
$2.182814(48) \times 10^{60}$ $\left[\mathbb{1}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | NaturalGauss |
$1.188798(26) \times 10^{57}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | QCD |
$1.188798(26) \times 10^{57}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | QCDGauss |
$1.188798(26) \times 10^{57}$ $\left[\text{m}_\text{p}\right]$ | $\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10}$ | QCDoriginal |