spat unit
data derived with UnitSystems.jl
\[\text{A}^{2}\]
\[\left[\phi^{2}\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Metric |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | SI2019 |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | SI1976 |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | CODATA |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Conventional |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | International |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | InternationalMean |
$0.3183098861837907$ $\left[\tau^{2}\right]$ | $\tau^{-1}2$ | MetricTurn |
$1.0$ $\left[\varsigma^{2}\right]$ | $1$ | MetricSpatian |
$50929.58178940651$ $\left[\text{gon}^{2}\right]$ | $\tau^{-1}2^{9}5^{4}$ | MetricGradian |
$41252.96124941928$ $\left[\text{deg}^{2}\right]$ | $\tau^{-1}2^{7}3^{4}5^{2}$ | MetricDegree |
$1.485106604979094 \times 10^{8}$ $\left[\text{amin}^{2}\right]$ | $\tau^{-1}2^{11}3^{6}5^{4}$ | MetricArcminute |
$5.346383777924738 \times 10^{11}$ $\left[\text{asec}^{2}\right]$ | $\tau^{-1}2^{15}3^{8}5^{6}$ | MetricArcsecond |
$12.566370614359172$ $\left[\text{rad}^{2}\right]$ | $\tau\cdot 2$ | Engineering |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Gravitational |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | MTS |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | EMU |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | ESU |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Gauss |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | LorentzHeaviside |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | FPS |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | IPS |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | British |
$12.566370614359172$ $\left[\text{rad}^{2}\right]$ | $\tau\cdot 2$ | English |
$12.566370614359172$ $\left[\text{rad}^{2}\right]$ | $\tau\cdot 2$ | Survey |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | MPH |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | KKH |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Nautical |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Meridian |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | IAU☉ |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | IAUE |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | IAUJ |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Hubble |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Cosmological |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | CosmologicalQuantum |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Planck |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | PlanckGauss |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Stoney |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Hartree |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Rydberg |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Schrodinger |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Electronic |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | Natural |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | NaturalGauss |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | QCD |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | QCDGauss |
$12.566370614359172$ $\left[\mathbb{1}\right]$ | $\tau\cdot 2$ | QCDoriginal |