statfarad unit
data derived with UnitSystems.jl
\[\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}\]
\[\left[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0\right]\]
Quantity | Product | UnitSystem |
---|---|---|
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | Metric |
$1.11265005545(17) \times 10^{-12}$ $\left[\text{F}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau\cdot 2^{-2}5^{-2}$ | SI2019 |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{kg}^{-1}\text{m}^{-2}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | SI1976 |
$1.11265005561(31) \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-1}\alpha^{-1}\text{R}_\text{K}^{-1}\tau\cdot 2^{-2}5^{-2}$ | CODATA |
$1.11265007525(17) \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-1}\alpha^{-1}{\text{R}_\text{K}^{90}}^{-1}\tau\cdot 2^{-2}5^{-2}$ | Conventional |
$1.1132008178313646 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}\Omega_\text{it}\cdot 2^{5}5^{5}$ | International |
$1.1131952545810848 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}1.00049$ | InternationalMean |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricTurn |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricSpatian |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricGradian |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricDegree |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricArcminute |
$1.1126500560536183 \times 10^{-12}$ $\left[\text{F}\right]$ | $\text{c}^{-2}2^{5}5^{5}$ | MetricArcsecond |
$1.0911369672198216 \times 10^{-11}$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot 2^{5}5^{5}$ | Engineering |
$1.0911369672198216 \times 10^{-11}$ $\left[\text{kgf}^{-1}\text{m}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot 2^{5}5^{5}$ | Gravitational |
$1.1126500560536184 \times 10^{-9}$ $\left[\text{t}^{-1}\text{m}^{-2}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}2^{8}5^{8}$ | MTS |
$1.1126500560536184 \times 10^{-21}$ $\left[\text{cm}^{-1}\text{s}^{2}\right]$ | $\text{c}^{-2}2^{-4}5^{-4}$ | EMU |
$1.0$ $\left[\text{cm}\right]$ | $1$ | ESU |
$1.0$ $\left[\text{cm}\right]$ | $1$ | Gauss |
$12.566370614359172$ $\left[\text{cm}\right]$ | $\tau\cdot 2$ | LorentzHeaviside |
$4.688719585797757 \times 10^{-14}$ $\left[\text{lb}^{-1}\text{ft}^{-2}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{ft}^{2}\text{lb}\cdot 2^{5}5^{5}$ | FPS |
$1.257125763507862 \times 10^{-13}$ $\left[\text{lb}^{-1}\text{in}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{3}3^{-1}5^{5}$ | IPS |
$1.5085509162094345 \times 10^{-12}$ $\left[\text{lb}^{-1}\text{ft}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{5}5^{5}$ | British |
$1.5085509162094345 \times 10^{-12}$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{5}5^{5}$ | English |
$1.5085539333173012 \times 10^{-12}$ $\left[\text{lbf}^{-1}\text{ft}^{-1}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}_\text{US}\cdot \text{lb}\cdot 2^{5}5^{5}$ | Survey |
$1.008595679789384 \times 10^{-13}$ $\left[\text{lb}^{-1}\text{mi}^{-2}\text{h}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{ft}^{2}\text{lb}\cdot 2^{7}3^{-2}5^{3}11^{2}$ | MPH |
$8.585262778191499 \times 10^{-14}$ $\left[\text{kg}^{-1}\text{km}^{-2}\text{h}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}2^{3}3^{-4}5^{7}$ | KKH |
$2.9484549742(30) \times 10^{-13}$ $\left[\text{keg}^{-1}\text{nm}^{-2}\text{h}^{2}\text{eC}^{2}\right]$ | $\text{c}^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2^{-4}3^{-10}5^{4}$ | Nautical |
$1.1142612338(11) \times 10^{-12}$ $\left[\text{eF}\right]$ | $\text{c}^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2^{-4}5^{-2}$ | Meridian |
$6.63266(15) \times 10^{30}$ $\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-37}3^{-20}5^{-9}$ | IAU☉ |
$1.315308(29) \times 10^{20}$ $\left[\text{ME}^{-1}\text{LD}^{-2}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot \tau\cdot 2^{-3}5^{7}2.0269216899999997 \times 10^{8}$ | IAUE |
$1.714547(38) \times 10^{29}$ $\left[\text{MJ}^{-1}\text{JD}^{-2}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot \tau\cdot 2^{3}3^{-4}5^{13}6.733661704899999 \times 10^{10}$ | IAUJ |
$7.314(45) \times 10^{-29}$ $\left[\text{Q}^{2}\right]$ | $\text{c}^{-1}\text{H}_0\cdot \text{au}^{-1}\tau\cdot 2^{-12}3^{-4}5^{-8}$ | Hubble |
$2.097(16) \times 10^{-29}$ $\left[\text{M}^{-1}\text{Q}^{2}\right]$ | $\text{c}^{-1}\Omega_{\Lambda}^{1/2}\text{H}_0\cdot \text{au}^{-1}\tau^{1/2}2^{-13}3^{-7/2}5^{-8}$ | Cosmological |
$113.92(42)$ $\left[\text{M}^{-1}\text{Q}^{2}\right]$ | $\hbar^{-1/2}\Omega_{\Lambda}^{1/4}\text{H}_0^{1/2}\text{au}^{-1/2}\text{m}_\text{P}^{1/2}\tau^{3/4}2^{-15/2}3^{-7/4}5^{-5}$ | CosmologicalQuantum |
$2.193285(24) \times 10^{33}$ $\left[\text{M}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{3/2}2^{-3/2}5^{-2}$ | Planck |
$6.187141(68) \times 10^{32}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau\cdot 2^{-2}5^{-2}$ | PlanckGauss |
$7.242815(80) \times 10^{33}$ $\left[\text{M}^{-1}\text{Q}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot \tau\cdot 2^{-2}5^{-2}$ | Stoney |
$1.88972612463(29) \times 10^{8}$ $\left[\text{a}_0^{2}\text{e}^{2}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2^{-1}5^{-2}$ | Hartree |
$1.88972612463(29) \times 10^{8}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2^{-1}5^{-2}$ | Rydberg |
$3.856897(43) \times 10^{29}$ $\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \alpha^{3/2}\text{m}_\text{P}\cdot \tau\cdot 2^{-2}5^{-2}$ | Schrodinger |
$3.5486911866(16) \times 10^{12}$ $\left[\text{e}^2\right]$ | $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{-1}5^{-2}$ | Electronic |
$3.25419371152(10) \times 10^{11}$ $\left[\mathbb{1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}5^{-2}$ | Natural |
$2.58960507484(79) \times 10^{10}$ $\left[\text{e}_\text{n}^{2}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-1}5^{-2}$ | NaturalGauss |
$5.9751964833(19) \times 10^{14}$ $\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{2}5^{-2}$ | QCD |
$4.7549102813(15) \times 10^{13}$ $\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{-1}5^{-2}$ | QCDGauss |
$6.5159388095(30) \times 10^{15}$ $\left[\text{m}_\text{p}^{-1}\text{e}^{2}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{-1}5^{-2}$ | QCDoriginal |