vacuum impedance unit
data derived with UnitSystems.jl
\[\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}\]
\[\left[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}\right]\]
\[Z_0 = \mu_0\lambda c\alpha_L^2 = \frac{\lambda}{\varepsilon_0 c} = \lambda\alpha_L\sqrt{\frac{\mu_0}{\varepsilon_0}} = \frac{2h\alpha}{e^2} = 2R_K\alpha\]
Quantity | Product | UnitSystem |
---|---|---|
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | Metric |
$376.730313667(58)$ $\left[\Omega\right]$ | $\hbar\cdot \text{e}^{-2}\alpha\cdot 2$ | SI2019 |
$376.7303134617706$ $\left[\text{kg}\cdot \text{m}^{2}\text{s}^{-1}\text{C}^{-2}\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | SI1976 |
$376.73031361(10)$ $\left[\Omega\right]$ | $\alpha\cdot \text{R}_\text{K}\cdot 2$ | CODATA |
$376.730306964(58)$ $\left[\Omega\right]$ | $\alpha\cdot {\text{R}_\text{K}^{90}}\cdot 2$ | Conventional |
$376.5439242192821$ $\left[\Omega\right]$ | $\text{c}\cdot \Omega_\text{it}^{-1}\tau\cdot 2^{-6}5^{-7}$ | International |
$376.5458060168223$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}/1.00049$ | InternationalMean |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricTurn |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricSpatian |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricGradian |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricDegree |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricArcminute |
$376.7303134617706$ $\left[\Omega\right]$ | $\text{c}\cdot \tau\cdot 2^{-6}5^{-7}$ | MetricArcsecond |
$38.41580085572246$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\tau\cdot 2^{-6}5^{-7}$ | Engineering |
$38.41580085572246$ $\left[\text{kgf}\cdot \text{m}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\tau\cdot 2^{-6}5^{-7}$ | Gravitational |
$0.37673031346177066$ $\left[\text{t}\cdot \text{m}^{2}\text{s}^{-1}\text{C}^{-2}\right]$ | $\text{c}\cdot \tau\cdot 2^{-9}5^{-10}$ | MTS |
$3.767303134617706 \times 10^{11}$ $\left[\text{cm}\cdot \text{s}^{-1}\right]$ | $\text{c}\cdot \tau\cdot 2^{3}5^{2}$ | EMU |
$4.1916900439033643 \times 10^{-10}$ $\left[\text{cm}^{-1}\text{s}\right]$ | $\text{c}^{-1}\tau\cdot 2^{-1}5^{-2}$ | ESU |
$4.1916900439033643 \times 10^{-10}$ $\left[\text{cm}^{-1}\text{s}\right]$ | $\text{c}^{-1}\tau\cdot 2^{-1}5^{-2}$ | Gauss |
$3.335640951981521 \times 10^{-11}$ $\left[\text{cm}^{-1}\text{s}\right]$ | $\text{c}^{-1}2^{-2}5^{-2}$ | LorentzHeaviside |
$8939.946113647085$ $\left[\text{lb}\cdot \text{ft}^{2}\text{s}^{-1}\text{C}^{-2}\right]$ | $\text{c}\cdot \text{ft}^{-2}\text{lb}^{-1}\tau\cdot 2^{-6}5^{-7}$ | FPS |
$3334.344236337137$ $\left[\text{lb}\cdot \text{in}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau\cdot 2^{-4}3\cdot 5^{-7}$ | IPS |
$277.8620196947614$ $\left[\text{lb}\cdot \text{ft}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau\cdot 2^{-6}5^{-7}$ | British |
$277.8620196947614$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\text{ft}^{-1}\text{lb}^{-1}\tau\cdot 2^{-6}5^{-7}$ | English |
$277.86146397072207$ $\left[\text{lbf}\cdot \text{ft}\cdot \text{s}\cdot \text{C}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{-1}\text{ft}_\text{US}^{-1}\text{lb}^{-1}\tau\cdot 2^{-6}5^{-7}$ | Survey |
$1.1544351902953365$ $\left[\text{lb}\cdot \text{mi}^{2}\text{h}^{-1}\text{C}^{-2}\right]$ | $\text{c}\cdot \text{ft}^{-2}\text{lb}^{-1}\tau\cdot 2^{-12}5^{-7}11^{-2}$ | MPH |
$1.3562291284623742$ $\left[\text{kg}\cdot \text{km}^{2}\text{h}^{-1}\text{C}^{-2}\right]$ | $\text{c}\cdot \tau\cdot 2^{-8}3^{2}5^{-11}$ | KKH |
$0.39490457060(40)$ $\left[\text{keg}\cdot \text{nm}^{2}\text{h}^{-1}\text{eC}^{-2}\right]$ | $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}2^{-1}3^{8}5^{-8}$ | Nautical |
$376.18557632(38)$ $\left[\text{e}\Omega\right]$ | $\text{c}\cdot \text{g}_0^{1/2}\text{GM}_\text{E}^{-1/2}2^{3}$ | Meridian |
$7.31455(16) \times 10^{-46}$ $\left[\text{M}_\odot\cdot \text{au}^{2}\text{D}^{-1}\text{C}^{-2}\right]$ | $\hbar\cdot \text{c}^{2}\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}2^{29}3^{17}5^{5}$ | IAU☉ |
$3.688484(81) \times 10^{-35}$ $\left[\text{ME}\cdot \text{LD}^{2}\text{D}^{-1}\text{C}^{-2}\right]$ | $\hbar\cdot \text{c}^{2}\text{m}_\text{P}^{-2}\text{GM}_\text{E}^{-1}2^{-5}3^{-3}5^{-11}/2.0269216899999997 \times 10^{8}$ | IAUE |
$2.829606(62) \times 10^{-44}$ $\left[\text{MJ}\cdot \text{JD}^{2}\text{D}^{-1}\text{C}^{-2}\right]$ | $\hbar\cdot \text{c}^{2}\text{m}_\text{P}^{-2}\text{GM}_\text{J}^{-1}2^{-11}3\cdot 5^{-17}/67336617049$ | IAUJ |
$12.566370614359172$ $\left[\text{T}\cdot \text{Q}^{-2}\right]$ | $\tau\cdot 2$ | Hubble |
$12.566370614359172$ $\left[\text{M}\cdot \text{T}\cdot \text{Q}^{-2}\right]$ | $\tau\cdot 2$ | Cosmological |
$12.566370614359172$ $\left[\text{e}_\text{n}^{-2}\right]$ | $\tau\cdot 2$ | CosmologicalQuantum |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Planck |
$12.566370614359172$ $\left[\text{e}_\text{n}^{-2}\right]$ | $\tau\cdot 2$ | PlanckGauss |
$12.566370614359172$ $\left[\text{M}\cdot \text{T}\cdot \text{Q}^{-2}\right]$ | $\tau\cdot 2$ | Stoney |
$0.091701236889(14)$ $\left[\text{e}^{-2}\right]$ | $\alpha\cdot \tau\cdot 2$ | Hartree |
$0.0458506184446(70)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ | $\alpha\cdot \tau$ | Rydberg |
$0.091701236889(14)$ $\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ | $\alpha\cdot \tau\cdot 2$ | Schrodinger |
$12.566370614359172$ $\left[\text{T}\cdot \text{Q}^{-2}\right]$ | $\tau\cdot 2$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$12.566370614359172$ $\left[\text{e}_\text{n}^{-2}\right]$ | $\tau\cdot 2$ | NaturalGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCD |
$12.566370614359172$ $\left[\text{e}_\text{n}^{-2}\right]$ | $\tau\cdot 2$ | QCDGauss |
$0.091701236889(14)$ $\left[\text{e}^{-2}\right]$ | $\alpha\cdot \tau\cdot 2$ | QCDoriginal |