vacuum permittivity unit
data derived with UnitSystems.jl
\[\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}\]
\[\left[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}\right]\]
\[\varepsilon_0 = \frac{1}{\mu_0(c\alpha_L)^2} = \frac{\lambda}{4\pi k_e} = \frac{\lambda e^2}{2\alpha hc} = \frac{\lambda}{2R_K\alpha c}\]
Quantity | Product | UnitSystem |
---|---|---|
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | Metric |
$8.8541878128(14) \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ | SI2019 |
$8.854187817620389 \times 10^{-12}$ $\left[\text{kg}^{-1}\text{m}^{-3}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | SI1976 |
$8.8541878141(24) \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-1}\alpha^{-1}\text{R}_\text{K}^{-1}2^{-1}$ | CODATA |
$8.8541879703(14) \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-1}\alpha^{-1}{\text{R}_\text{K}^{90}}^{-1}2^{-1}$ | Conventional |
$8.85857064059011 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\Omega_\text{it}\cdot \tau^{-1}2^{6}5^{7}$ | International |
$8.858526369651026 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}1.00049$ | InternationalMean |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricTurn |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricSpatian |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricGradian |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricDegree |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricArcminute |
$8.854187817620389 \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\text{c}^{-2}\tau^{-1}2^{6}5^{7}$ | MetricArcsecond |
$8.682992096166699 \times 10^{-11}$ $\left[\text{kgf}^{-1}\text{m}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \tau^{-1}2^{6}5^{7}$ | Engineering |
$8.682992096166699 \times 10^{-11}$ $\left[\text{kgf}^{-1}\text{m}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \tau^{-1}2^{6}5^{7}$ | Gravitational |
$8.85418781762039 \times 10^{-9}$ $\left[\text{t}^{-1}\text{m}^{-3}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\tau^{-1}2^{9}5^{10}$ | MTS |
$1.1126500560536184 \times 10^{-21}$ $\left[\text{cm}^{-2}\text{s}^{2}\right]$ | $\text{c}^{-2}2^{-4}5^{-4}$ | EMU |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | ESU |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Gauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | LorentzHeaviside |
$1.1372589378496816 \times 10^{-13}$ $\left[\text{lb}^{-1}\text{ft}^{-3}\text{s}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{ft}^{3}\text{lb}\cdot \tau^{-1}2^{6}5^{7}$ | FPS |
$2.5409877977507057 \times 10^{-14}$ $\left[\text{lb}^{-1}\text{in}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}^{2}\text{lb}\cdot \tau^{-1}2^{2}3^{-2}5^{7}$ | IPS |
$3.659022428761016 \times 10^{-12}$ $\left[\text{lb}^{-1}\text{ft}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}^{2}\text{lb}\cdot \tau^{-1}2^{6}5^{7}$ | British |
$3.659022428761016 \times 10^{-12}$ $\left[\text{lbf}^{-1}\text{ft}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}^{2}\text{lb}\cdot \tau^{-1}2^{6}5^{7}$ | English |
$3.659037064894639 \times 10^{-12}$ $\left[\text{lbf}^{-1}\text{ft}^{-2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{g}_0\cdot \text{ft}_\text{US}^{2}\text{lb}\cdot \tau^{-1}2^{6}5^{7}$ | Survey |
$1.2916835381571635 \times 10^{-9}$ $\left[\text{lb}^{-1}\text{mi}^{-3}\text{h}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\text{ft}^{3}\text{lb}\cdot \tau^{-1}2^{13}3^{-1}5^{6}11^{3}$ | MPH |
$6.831935044460177 \times 10^{-10}$ $\left[\text{kg}^{-1}\text{km}^{-3}\text{h}^{2}\text{C}^{2}\right]$ | $\text{c}^{-2}\tau^{-1}2^{7}3^{-4}5^{12}$ | KKH |
$4.3513027714(87) \times 10^{-9}$ $\left[\text{keg}^{-1}\text{nm}^{-3}\text{h}^{2}\text{eC}^{2}\right]$ | $\text{c}^{-2}\text{g}_0^{-1}\text{GM}_\text{E}\cdot \tau\cdot 2^{-8}3^{-13}5^{4}$ | Nautical |
$8.879849073(18) \times 10^{-12}$ $\left[\text{eF} \cdot \text{em}^{-1}\right]$ | $\text{c}^{-2}\text{g}_0^{-1}\text{GM}_\text{E}\cdot \tau\cdot 2^{-12}5^{-7}$ | Meridian |
$7.89593(17) \times 10^{42}$ $\left[\text{M}_\odot^{-1}\text{au}^{-3}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{au}^{6}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{2}2^{-36}3^{-20}5^{-7}$ | IAU☉ |
$4.023462(89) \times 10^{29}$ $\left[\text{ME}^{-1}\text{LD}^{-3}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot 2\cdot 3^{3}5^{12}2885728410053$ | IAUE |
$1.062152(23) \times 10^{42}$ $\left[\text{MJ}^{-1}\text{JD}^{-3}\text{D}^{2}\text{C}^{2}\right]$ | $\hbar^{-1}\text{c}^{-3}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot 2^{10}3^{-3}5^{21}1.7473380767896156 \times 10^{16}$ | IAUJ |
$0.07957747154594767$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Hubble |
$0.07957747154594767$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Cosmological |
$0.07957747154594767$ $\left[\text{e}_\text{n}^2\right]$ | $\tau^{-1}2^{-1}$ | CosmologicalQuantum |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Planck |
$0.07957747154594767$ $\left[\text{e}_\text{n}^{2}\right]$ | $\tau^{-1}2^{-1}$ | PlanckGauss |
$0.07957747154594767$ $\left[\text{M}^{-1}\text{T}^{-1}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Stoney |
$0.07957747154594767$ $\left[\text{a}_0\cdot \text{e}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Hartree |
$0.07957747154594767$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Rydberg |
$0.07957747154594767$ $\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Schrodinger |
$0.07957747154594767$ $\left[\text{T}^{-1}\text{Q}^{2}\right]$ | $\tau^{-1}2^{-1}$ | Electronic |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | Natural |
$0.07957747154594767$ $\left[\text{e}_\text{n}^{2}\right]$ | $\tau^{-1}2^{-1}$ | NaturalGauss |
$1.0$ $\left[\mathbb{1}\right]$ | $1$ | QCD |
$0.07957747154594767$ $\left[\text{e}_\text{n}^{2}\right]$ | $\tau^{-1}2^{-1}$ | QCDGauss |
$10.90497831790(17)$ $\left[\text{e}^{2}\right]$ | $\alpha^{-1}\tau^{-1}2^{-1}$ | QCDoriginal |