Electronic -> SI2019

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $9.3996371523(43) \times 10^{-24}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
angular time $9.3996371523(43) \times 10^{-24}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
length $2.8179403262(13) \times 10^{-15}$ $\left[\text{m}\right]/\left[\text{T}\right]$ $\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
angular length $2.8179403262(13) \times 10^{-15}$ $\left[\text{m}\right]/\left[\text{T}\right]$ $\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
area $7.9407876820(73) \times 10^{-30}$ $\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
angular area $7.9407876820(73) \times 10^{-30}$ $\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
volume $2.2376665831(31) \times 10^{-44}$ $\left[\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$
wavenumber $3.5486911866(16) \times 10^{14}$ $\left[\text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
angular wavenumber $3.5486911866(16) \times 10^{14}$ $\left[\text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
fuel efficiency $1.2593209138(12) \times 10^{29}$ $\left[\text{m}^{-2}\right]/\left[\text{T}^{-2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
number density $4.4689410280(62) \times 10^{43}$ $\left[\text{m}^{-3}\right]/\left[\text{T}^{-3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
frequency $1.06387085352(49) \times 10^{23}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
angular frequency $1.06387085352(49) \times 10^{23}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
frequency drift $1.1318211930(10) \times 10^{46}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
stagnance $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}$
speed $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}$
acceleration $3.1894045817(15) \times 10^{31}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{T}^{-1}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
jerk $3.3931145746(31) \times 10^{54}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{T}^{-2}\right]$ $\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
snap $3.6098356986(50) \times 10^{77}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{T}^{-3}\right]$ $\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
crackle $3.8403989857(71) \times 10^{100}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{T}^{-4}\right]$ $\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-12}\tau^{4}2^{4}$
pop $4.0856885468(94) \times 10^{123}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{T}^{-5}\right]$ $\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-15}\tau^{5}2^{5}$
volume flow $2.3805882576(22) \times 10^{-21}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{T}^{2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
etendue $7.9407876820(73) \times 10^{-30}$ $\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
photon intensity $1.06387085352(49) \times 10^{23}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
photon irradiance $1.18371596481(54) \times 10^{6}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{T}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
photon radiance $1.18371596481(54) \times 10^{6}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{T}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$

Mechanical Ratios

Name Quantity Product
inertia $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass flow $9.6912078136(74) \times 10^{-8}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
linear density $3.2326389657(25) \times 10^{-16}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
area density $0.11471637407(14)$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
density $4.0709298563(69) \times 10^{13}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
specific weight $1.2983842336(28) \times 10^{45}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{T}^{-4}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$
specific volume $2.4564412439(41) \times 10^{-14}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
force $29.053510114(22)$ $\left[\text{N}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
specific force $3.1894045817(15) \times 10^{31}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{T}^{-1}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $3.6587692907(62) \times 10^{30}$ $\left[\text{Pa}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
compressibility $2.7331594877(46) \times 10^{-31}$ $\left[\text{Pa}^{-1}\right]/\left[\text{T}^{3}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
viscosity $3.4391103756(42) \times 10^{7}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
diffusivity $8.4479725689(39) \times 10^{-7}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{T}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
rotational inertia $7.2335681888(44) \times 10^{-60}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{T}^{2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$
impulse $2.73092453076(84) \times 10^{-22}$ $\left[\text{N} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
momentum $2.73092453076(84) \times 10^{-22}$ $\left[\text{N} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
angular momentum $7.6955823630(12) \times 10^{-37}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{T}\right]$ $\hbar\cdot \alpha\cdot \tau^{-1}$
yank $3.0909182603(38) \times 10^{24}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
energy $8.1871057769(25) \times 10^{-14}$ $\left[\text{J}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
specific energy $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}$
action $7.6955823630(12) \times 10^{-37}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{T}\right]$ $\hbar\cdot \alpha\cdot \tau^{-1}$
fluence $1.0310193528(13) \times 10^{16}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
power $8.7100232107(67) \times 10^{9}$ $\left[\text{W}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
power density $3.8924580081(84) \times 10^{53}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{T}^{-4}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$
irradiance $1.0968714389(18) \times 10^{39}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
radiance $1.0968714389(18) \times 10^{39}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
radiant intensity $8.7100232107(67) \times 10^{9}$ $\left[\text{W}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
spectral flux $3.0909182603(38) \times 10^{24}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
spectral exposure $9.6912078136(74) \times 10^{-8}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
sound exposure $1.2582911429(37) \times 10^{38}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{T}^{-5}\right]$ $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-19}\tau^{5}2^{7}$
impedance $1.5369181457(40) \times 10^{51}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{T}^{-5}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-17}\tau^{5}2^{6}$
specific impedance $1.2204340680(21) \times 10^{22}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
admittance $6.506527383(17) \times 10^{-52}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{T}^{5}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{17}\tau^{-5}2^{-6}$
compliance $9.699138986(12) \times 10^{-17}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{T}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
inertance $1.4446472903(31) \times 10^{28}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{T}^{-4}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$

Electromagnetic Ratios

Name Quantity Product
charge $1.602176634 \times 10^{-19}$ $\left[\text{C}\right]/\left[\text{e}\right]$ $\text{e}$
charge density $7.1600328937(99) \times 10^{24}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{T}^{-3}\text{Q}\right]$ $\text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
linear charge density $5.6856301005(26) \times 10^{-5}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
exposure $1.75882001076(54) \times 10^{11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mobility $0.431690511231(66)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{T}\cdot \text{Q}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha\cdot \tau^{-1}$
current $17045.0902311(78)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
current density $2.1465238606(30) \times 10^{33}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-3}\text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
resistance $29.9792458163(46)$ $\left[\Omega\right]/\left[\text{T}\cdot \text{Q}^{-2}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
conductance $0.0333564095016(51)$ $\left[\text{S}\right]/\left[\text{T}^{-1}\text{Q}^{2}\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$
resistivity $8.4479725735(52) \times 10^{-14}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$
conductivity $1.18371596416(73) \times 10^{13}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{T}^{-2}\text{Q}^{2}\right]$ $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-4}\tau^{2}2$
capacitance $3.13538146018(96) \times 10^{-25}$ $\left[\text{F}\right]/\left[\text{e}^2\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
inductance $2.8179403277(17) \times 10^{-22}$ $\left[\text{H}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$
reluctance $3.5486911847(22) \times 10^{21}$ $\left[\text{H}^{-1}\right]/\left[\text{T}^{-2}\text{Q}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-4}\tau^{2}2$
permeance $2.8179403277(17) \times 10^{-22}$ $\left[\text{H}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$
permittivity $1.11265005545(17) \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{T}^{-1}\text{Q}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$
permeability $1.00000000055(15) \times 10^{-7}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{T}\cdot \text{Q}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha\cdot \tau^{-1}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $2.4564412439(41) \times 10^{-14}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $0.00170450902404(52)$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{e}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
electric potential $510998.95000(16)$ $\left[\text{V}\right]/\left[\text{e}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
magnetic potential $17045.0902311(78)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
electric field $1.8133774702(14) \times 10^{20}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
magnetic field $6.0487761478(56) \times 10^{18}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
electric flux $1.43996454784(22) \times 10^{-9}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{T}\cdot \text{Q}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha\cdot \tau^{-1}$
magnetic flux $4.80320471519(74) \times 10^{-18}$ $\left[\text{Wb}\right]/\left[\text{T}\cdot \text{Q}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\alpha\cdot \tau^{-1}$
electric displacement $2.0176545428(19) \times 10^{10}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ $\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
magnetic flux density $6.0487761511(46) \times 10^{11}$ $\left[\text{T}\right]/\left[\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
electric dipole moment $4.5148381466(21) \times 10^{-34}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{T}\cdot \text{Q}\right]$ $\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
magnetic dipole moment $1.35351442545(62) \times 10^{-25}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{T}\cdot \text{Q}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
electric polarizability $2.4897398477(31) \times 10^{-54}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{T}^{2}\text{Q}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
magnetic polarizability $2.2376665831(31) \times 10^{-44}$ $\left[\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$
magnetic moment $1.35351442619(83) \times 10^{-32}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{T}^{2}\text{Q}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$
specific magnetization $67.301711199(62)$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ $\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
pole strength $4.803204712570263 \times 10^{-11}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{e}\right]$ $\text{c}\cdot \text{e}$

Thermodynamic Ratios

Name Quantity Product
temperature $5.9298965754(18) \times 10^{9}$ $\left[\text{K}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
entropy $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}$
specific entropy $1.51563381809(46) \times 10^{7}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
volume heat capacity $6.1700389613(85) \times 10^{20}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{T}^{-3}\right]$ $\text{k}_\text{B}\cdot \text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
thermal conductivity $5.2124319894(48) \times 10^{14}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
thermal conductance $1.46883223005(68)$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
thermal resistivity $1.9184902595(18) \times 10^{-15}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{T}^{2}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
thermal resistance $0.68081294755(31)$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{T}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
thermal expansion $1.68637005265(52) \times 10^{-10}$ $\left[\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
lapse rate $2.1043371715(16) \times 10^{24}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{T}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$

Molar Ratios

Name Quantity Product
molar mass $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molality $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar amount $9.10938370469(26) \times 10^{-28}$ $\left[\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\mu_\text{eu}$
molarity $4.0709298577(56) \times 10^{16}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{T}^{-3}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-9}\mu_\text{eu}\cdot \tau^{3}2^{3}$
molar volume $2.4564412430(34) \times 10^{-17}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{T}^{3}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{9}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$
molar entropy $15156.33817565(44)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$
molar energy $8.9875517843(28) \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar conductivity $1.03186312619(32) \times 10^{11}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{e}^2\right]$ $\text{N}_\text{A}\cdot \hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}2^{-1}$
molar susceptibility $2.4564412430(34) \times 10^{-17}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{T}^{3}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{9}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$
catalysis $9.6912078170(45) \times 10^{-5}$ $\left[\text{kat}\right]/\left[\text{T}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}\cdot \tau\cdot 2$
specificity $2.6133362418(24) \times 10^{6}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{T}^{2}\right]$ $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-2}2^{-2}$
diffusion flux $1.07829229208(50) \times 10^{-21}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{T}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}\cdot \tau\cdot 2$

Photometric Ratios

Name Quantity Product
luminous flux $5.9491173541(46) \times 10^{12}$ $\left[\text{cd}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
luminous intensity $5.9491173541(46) \times 10^{12}$ $\left[\text{cd}\right]/\left[\text{T}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{2}$
luminance $7.491847903(13) \times 10^{41}$ $\left[\text{lx}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
illuminance $7.491847903(13) \times 10^{41}$ $\left[\text{lx}\right]/\left[\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
luminous energy $5.5919544505(17) \times 10^{-11}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
luminous exposure $7.0420651885(86) \times 10^{18}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified Electronic SI2019
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{T}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{T}$ $\text{s}$
length $\text{L}$ $\text{T}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{T}$ $\text{m}$
area $\text{L}^{2}$ $\text{T}^{2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{T}^{2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{T}^{3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{T}^{-1}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{T}^{-1}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{T}^{-2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{T}^{-3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{T}^{-1}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{T}^{-1}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{T}^{-1}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{T}^{-2}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{T}^{-3}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{T}^{-4}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{T}^{-5}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{T}^{2}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{T}^{2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-1}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{T}^{-1}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{T}^{-1}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified Electronic SI2019
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\mathbb{1}$ $\text{kg}$
mass $\text{M}$ $\mathbb{1}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{T}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{T}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{T}^{-4}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{T}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{T}^{-1}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{T}^{-1}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{T}^{-3}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{T}^{3}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{T}^{-2}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{T}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{T}^{2}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\mathbb{1}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{T}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{T}^{-2}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\mathbb{1}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\mathbb{1}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{T}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{T}^{-2}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{T}^{-1}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{T}^{-4}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-1}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{T}^{-2}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{T}^{-5}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{T}^{-5}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{T}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{T}^{5}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{T}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified Electronic SI2019
charge $\text{Q}$ $\text{e}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{T}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{T}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{e}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{T}\cdot \text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{T}^{-3}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{T}\cdot \text{Q}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{T}^{-1}\text{Q}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{T}^{2}\text{Q}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{T}^{-2}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{e}^2$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{T}^{2}\text{Q}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{T}^{-2}\text{Q}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{T}^{2}\text{Q}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{T}^{-1}\text{Q}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{T}\cdot \text{Q}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{T}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{e}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{T}^{-1}\text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{T}^{-2}\text{Q}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{T}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}\cdot \text{Q}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{T}^{-2}\text{Q}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{T}\cdot \text{Q}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{T}\cdot \text{Q}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{T}^{2}\text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{T}^{3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}^{2}\text{Q}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{T}^{-2}\text{Q}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified Electronic SI2019
temperature $\Theta$ $\mathbb{1}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{T}^{-3}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{T}^{-2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{T}^{-1}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{T}^{2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{T}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\mathbb{1}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{T}^{-1}$ $\text{m}^{-1}\text{K}$

Molar

Unified Electronic SI2019
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\mathbb{1}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{T}^{-3}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{T}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{e}^2$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{T}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{T}^{-1}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{T}^{2}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{T}^{-1}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified Electronic SI2019
luminous flux $\text{J}$ $\text{T}^{-1}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{T}^{-1}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{T}^{-3}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{T}^{-3}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{T}^{-2}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$