Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$9.3996371523(43)
\times 10^{-24}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
angular time |
$9.3996371523(43)
\times 10^{-24}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
length |
$2.8179403262(13)
\times 10^{-15}$
$\left[\text{m}\right]/\left[\text{T}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
angular length |
$2.8179403262(13)
\times 10^{-15}$
$\left[\text{m}\right]/\left[\text{T}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
area |
$7.9407876820(73)
\times 10^{-30}$
$\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
angular area |
$7.9407876820(73)
\times 10^{-30}$
$\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
volume |
$2.2376665831(31)
\times 10^{-44}$
$\left[\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$ |
wavenumber |
$3.5486911866(16)
\times 10^{14}$
$\left[\text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
angular wavenumber |
$3.5486911866(16)
\times 10^{14}$
$\left[\text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
fuel efficiency |
$1.2593209138(12)
\times 10^{29}$
$\left[\text{m}^{-2}\right]/\left[\text{T}^{-2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
number density |
$4.4689410280(62)
\times 10^{43}$
$\left[\text{m}^{-3}\right]/\left[\text{T}^{-3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
frequency |
$1.06387085352(49)
\times 10^{23}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
angular frequency |
$1.06387085352(49)
\times 10^{23}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
frequency drift |
$1.1318211930(10)
\times 10^{46}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
stagnance |
$3.3356409519815204
\times 10^{-9}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}$ |
speed |
$2.99792458 \times
10^{8}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}$ |
acceleration |
$3.1894045817(15)
\times 10^{31}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
jerk |
$3.3931145746(31)
\times 10^{54}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{T}^{-2}\right]$ |
$\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
snap |
$3.6098356986(50)
\times 10^{77}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{T}^{-3}\right]$ |
$\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
crackle |
$3.8403989857(71)
\times 10^{100}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{T}^{-4}\right]$ |
$\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-12}\tau^{4}2^{4}$ |
pop |
$4.0856885468(94)
\times 10^{123}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{T}^{-5}\right]$ |
$\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-15}\tau^{5}2^{5}$ |
volume flow |
$2.3805882576(22)
\times 10^{-21}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{T}^{2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
etendue |
$7.9407876820(73)
\times 10^{-30}$
$\left[\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
photon intensity |
$1.06387085352(49)
\times 10^{23}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
photon irradiance |
$1.18371596481(54)
\times 10^{6}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
photon radiance |
$1.18371596481(54)
\times 10^{6}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
Name |
Quantity |
Product |
inertia |
$9.1093837016(28)
\times 10^{-31}$
$\left[\text{kg}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
mass |
$9.1093837016(28)
\times 10^{-31}$
$\left[\text{kg}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
mass flow |
$9.6912078136(74)
\times 10^{-8}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
linear density |
$3.2326389657(25)
\times 10^{-16}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
area density |
$0.11471637407(14)$
$\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
density |
$4.0709298563(69)
\times 10^{13}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
specific weight |
$1.2983842336(28)
\times 10^{45}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{T}^{-4}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$ |
specific volume |
$2.4564412439(41)
\times 10^{-14}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
force |
$29.053510114(22)$
$\left[\text{N}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
specific force |
$3.1894045817(15)
\times 10^{31}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$3.6587692907(62)
\times 10^{30}$
$\left[\text{Pa}\right]/\left[\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
compressibility |
$2.7331594877(46)
\times 10^{-31}$
$\left[\text{Pa}^{-1}\right]/\left[\text{T}^{3}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
viscosity |
$3.4391103756(42)
\times 10^{7}$ $\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
diffusivity |
$8.4479725689(39)
\times 10^{-7}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{T}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
rotational inertia |
$7.2335681888(44)
\times 10^{-60}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{T}^{2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$ |
impulse |
$2.73092453076(84)
\times 10^{-22}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
momentum |
$2.73092453076(84)
\times 10^{-22}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
angular momentum |
$7.6955823630(12)
\times 10^{-37}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{T}\right]$ |
$\hbar\cdot
\alpha\cdot \tau^{-1}$ |
yank |
$3.0909182603(38)
\times 10^{24}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
energy |
$8.1871057769(25)
\times 10^{-14}$
$\left[\text{J}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}2$ |
specific energy |
$8.987551787368176
\times 10^{16}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}$ |
action |
$7.6955823630(12)
\times 10^{-37}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{T}\right]$ |
$\hbar\cdot
\alpha\cdot \tau^{-1}$ |
fluence |
$1.0310193528(13)
\times 10^{16}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
power |
$8.7100232107(67)
\times 10^{9}$
$\left[\text{W}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
power density |
$3.8924580081(84)
\times 10^{53}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{T}^{-4}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$ |
irradiance |
$1.0968714389(18)
\times 10^{39}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
radiance |
$1.0968714389(18)
\times 10^{39}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
radiant intensity |
$8.7100232107(67)
\times 10^{9}$
$\left[\text{W}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
spectral flux |
$3.0909182603(38)
\times 10^{24}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
spectral exposure |
$9.6912078136(74)
\times 10^{-8}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
sound exposure |
$1.2582911429(37)
\times 10^{38}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{T}^{-5}\right]$ |
$\hbar^{2}\text{c}\cdot
\text{R}_{\infty}^{7}\alpha^{-19}\tau^{5}2^{7}$ |
impedance |
$1.5369181457(40)
\times 10^{51}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{T}^{-5}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-17}\tau^{5}2^{6}$ |
specific impedance |
$1.2204340680(21)
\times 10^{22}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
admittance |
$6.506527383(17)
\times 10^{-52}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{T}^{5}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{17}\tau^{-5}2^{-6}$ |
compliance |
$9.699138986(12)
\times 10^{-17}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{T}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
inertance |
$1.4446472903(31)
\times 10^{28}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{T}^{-4}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-14}\tau^{4}2^{5}$ |
Name |
Quantity |
Product |
charge |
$1.602176634 \times
10^{-19}$
$\left[\text{C}\right]/\left[\text{e}\right]$ |
$\text{e}$ |
charge density |
$7.1600328937(99)
\times 10^{24}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{T}^{-3}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
linear charge
density |
$5.6856301005(26)
\times 10^{-5}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
exposure |
$1.75882001076(54)
\times 10^{11}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mobility |
$0.431690511231(66)$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{T}\cdot
\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\alpha\cdot
\tau^{-1}$ |
current |
$17045.0902311(78)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
current density |
$2.1465238606(30)
\times 10^{33}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-3}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
resistance |
$29.9792458163(46)$
$\left[\Omega\right]/\left[\text{T}\cdot
\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot \tau^{-1}$ |
conductance |
$0.0333564095016(51)$
$\left[\text{S}\right]/\left[\text{T}^{-1}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
resistivity |
$8.4479725735(52)
\times 10^{-14}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$ |
conductivity |
$1.18371596416(73)
\times 10^{13}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{T}^{-2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-4}\tau^{2}2$ |
capacitance |
$3.13538146018(96)
\times 10^{-25}$
$\left[\text{F}\right]/\left[\text{e}^2\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
inductance |
$2.8179403277(17)
\times 10^{-22}$
$\left[\text{H}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$ |
reluctance |
$3.5486911847(22)
\times 10^{21}$
$\left[\text{H}^{-1}\right]/\left[\text{T}^{-2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-4}\tau^{2}2$ |
permeance |
$2.8179403277(17)
\times 10^{-22}$
$\left[\text{H}\right]/\left[\text{T}^{2}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$ |
permittivity |
$1.11265005545(17)
\times 10^{-10}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{T}^{-1}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
permeability |
$1.00000000055(15)
\times 10^{-7}$ $\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{T}\cdot
\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$2.4564412439(41)
\times 10^{-14}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$0.00170450902404(52)$
$\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
electric potential |
$510998.95000(16)$
$\left[\text{V}\right]/\left[\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
magnetic potential |
$17045.0902311(78)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
electric field |
$1.8133774702(14)
\times 10^{20}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
magnetic field |
$6.0487761478(56)
\times 10^{18}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
electric flux |
$1.43996454784(22)
\times 10^{-9}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{T}\cdot
\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\alpha\cdot
\tau^{-1}$ |
magnetic flux |
$4.80320471519(74)
\times 10^{-18}$
$\left[\text{Wb}\right]/\left[\text{T}\cdot
\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\alpha\cdot \tau^{-1}$ |
electric
displacement |
$2.0176545428(19)
\times 10^{10}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
magnetic flux
density |
$6.0487761511(46)
\times 10^{11}$
$\left[\text{T}\right]/\left[\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
electric dipole
moment |
$4.5148381466(21)
\times 10^{-34}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{T}\cdot
\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
magnetic dipole
moment |
$1.35351442545(62)
\times 10^{-25}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{T}\cdot
\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
electric
polarizability |
$2.4897398477(31)
\times 10^{-54}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
magnetic
polarizability |
$2.2376665831(31)
\times 10^{-44}$
$\left[\text{m}^{3}\right]/\left[\text{T}^{3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$ |
magnetic moment |
$1.35351442619(83)
\times 10^{-32}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{T}^{2}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{4}\tau^{-2}2^{-1}$ |
specific
magnetization |
$67.301711199(62)$
$\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{T}^{-2}\text{Q}\right]$ |
$\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
pole strength |
$4.803204712570263
\times 10^{-11}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{e}\right]$ |
$\text{c}\cdot
\text{e}$ |
Name |
Quantity |
Product |
temperature |
$5.9298965754(18)
\times 10^{9}$
$\left[\text{K}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$1.51563381809(46)
\times 10^{7}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
volume heat capacity |
$6.1700389613(85)
\times 10^{20}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{T}^{-3}\right]$ |
$\text{k}_\text{B}\cdot
\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
thermal conductivity |
$5.2124319894(48)
\times 10^{14}$ $\left[\text{W} \cdot
\text{m}^{-1}
\text{K}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
thermal conductance |
$1.46883223005(68)$ $\left[\text{W}
\cdot
\text{K}^{-1}\right]/\left[\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
thermal resistivity |
$1.9184902595(18)
\times 10^{-15}$ $\left[\text{K} \cdot
\text{m} \cdot
\text{W}^{-1}\right]/\left[\text{T}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
thermal resistance |
$0.68081294755(31)$ $\left[\text{K}
\cdot
\text{W}^{-1}\right]/\left[\text{T}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
thermal expansion |
$1.68637005265(52)
\times 10^{-10}$
$\left[\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
lapse rate |
$2.1043371715(16)
\times 10^{24}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{T}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{2}$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$9.10938370469(26)
\times 10^{-28}$
$\left[\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molarity |
$4.0709298577(56)
\times 10^{16}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{T}^{-3}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-9}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
molar volume |
$2.4564412430(34)
\times 10^{-17}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{T}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{9}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar entropy |
$15156.33817565(44)$ $\left[\text{J}
\cdot \text{K}^{-1}
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}$ |
molar energy |
$8.9875517843(28)
\times 10^{13}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar conductivity |
$1.03186312619(32)
\times 10^{11}$ $\left[\text{S} \cdot
\text{m}^2
\text{mol}^{-1}\right]/\left[\text{e}^2\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}2^{-1}$ |
molar susceptibility |
$2.4564412430(34)
\times 10^{-17}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{T}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{9}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
catalysis |
$9.6912078170(45)
\times 10^{-5}$
$\left[\text{kat}\right]/\left[\text{T}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}\cdot
\tau\cdot 2$ |
specificity |
$2.6133362418(24)
\times 10^{6}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{T}^{2}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-2}2^{-2}$ |
diffusion flux |
$1.07829229208(50)
\times 10^{-21}$
$\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{T}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3}\mu_\text{eu}\cdot \tau\cdot 2$ |
|
Unified |
Electronic |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{T}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{T}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{T}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{T}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{T}^{2}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{T}^{2}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{T}^{3}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{T}^{-1}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{T}^{-1}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{T}^{-2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{T}^{-3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{T}^{2}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{T}^{2}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{T}^{-1}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
Electronic |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\mathbb{1}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\mathbb{1}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{T}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{T}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{T}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{T}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{T}^{-1}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{T}^{-3}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{T}^{3}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{T}^{-2}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{T}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{T}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{T}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{T}^{-2}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\mathbb{1}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{T}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{T}^{-2}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{T}^{-4}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{T}^{-2}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{T}^{-5}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{T}^{-5}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{T}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{T}^{5}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{T}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
Electronic |
SI2019 |
charge |
$\text{Q}$ |
$\text{e}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{T}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{e}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{T}^{-3}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{T}\cdot
\text{Q}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{T}^{-2}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{e}^2$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{T}^{-2}\text{Q}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{T}^{-1}\text{Q}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{T}\cdot
\text{Q}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{T}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{e}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{e}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{T}^{-1}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{T}^{-2}\text{Q}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{T}^{-2}\text{Q}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{T}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{T}\cdot
\text{Q}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{T}^{2}\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{T}^{3}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}^{2}\text{Q}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{T}^{-2}\text{Q}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{e}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
Electronic |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\mathbb{1}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{T}^{-3}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{T}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{e}^2$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{T}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{T}^{-1}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{T}^{2}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{T}^{-1}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |