Hartree -> Metric

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $2.4188843265857(46) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{a}_0^{2}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
angular time $2.4188843265857(46) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{a}_0^{2}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
length $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
angular length $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
area $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
angular area $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
volume $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
wavenumber $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
angular wavenumber $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
fuel efficiency $3.5710648261(11) \times 10^{20}$ $\left[\text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
number density $6.7483344946(31) \times 10^{30}$ $\left[\text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
frequency $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
angular frequency $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
frequency drift $1.7091091492390(65) \times 10^{33}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ $\text{c}^{2}\text{R}_{\infty}^{2}\tau^{2}2^{2}$
stagnance $4.57102890440(70) \times 10^{-7}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\text{a}_0\right]$ $\text{c}^{-1}\alpha^{-1}$
speed $2.18769126364(34) \times 10^{6}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\text{c}\cdot \alpha$
acceleration $9.0442161272(14) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{a}_0^{-3}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2$
jerk $3.73900315439(57) \times 10^{39}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{a}_0^{-5}\right]$ $\text{c}^{3}\text{R}_{\infty}^{2}\alpha\cdot \tau^{2}2^{2}$
snap $1.54575525307(24) \times 10^{56}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{a}_0^{-7}\right]$ $\text{c}^{4}\text{R}_{\infty}^{3}\alpha\cdot \tau^{3}2^{3}$
crackle $6.39036450021(98) \times 10^{72}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{a}_0^{-9}\right]$ $\text{c}^{5}\text{R}_{\infty}^{4}\alpha\cdot \tau^{4}2^{4}$
pop $2.64186444551(41) \times 10^{89}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{a}_0^{-11}\right]$ $\text{c}^{6}\text{R}_{\infty}^{5}\alpha\cdot \tau^{5}2^{5}$
volume flow $6.1261594795(28) \times 10^{-15}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{a}_0\right]$ $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-2}$
etendue $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
photon intensity $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
photon irradiance $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
photon radiance $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$

Mechanical Ratios

Name Quantity Product
inertia $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass flow $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$
linear density $1.72142403601(79) \times 10^{-20}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau\cdot 2^{2}$
area density $3.2530199724(20) \times 10^{-10}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-4}\tau^{2}2^{3}$
density $6.1473168258(47)$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$
specific weight $5.5597661975(34) \times 10^{23}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-4}\tau^{4}2^{5}$
specific volume $0.16267259820(12)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$
force $8.2387234983(13) \times 10^{-8}$ $\left[\text{N}\right]/\left[\text{a}_0^{-3}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot 2^{2}$
specific force $9.0442161272(14) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{a}_0^{-3}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $2.9421015697(14) \times 10^{13}$ $\left[\text{Pa}\right]/\left[\text{a}_0^{-5}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{4}$
compressibility $3.3989309217(16) \times 10^{-14}$ $\left[\text{Pa}^{-1}\right]/\left[\text{a}_0^{5}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-4}$
viscosity $0.00071166033741(33)$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{a}_0^{-3}\right]$ $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-3}\tau^{2}2^{3}$
diffusivity $0.000115767636121(35)$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
rotational inertia $2.5508872409632(49) \times 10^{-51}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$
impulse $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{a}_0^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$
momentum $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{a}_0^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
yank $3.40600143947(52) \times 10^{9}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-5}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2^{3}$
energy $4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$
specific energy $4.7859930650(15) \times 10^{12}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ $\text{c}^{2}\alpha^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $1556.89310283(48)$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$
power $0.18023783420686(69)$ $\left[\text{W}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau\cdot 2^{2}$
power density $1.21630519382(56) \times 10^{30}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{a}_0^{-7}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-3}\tau^{4}2^{5}$
irradiance $6.4364099007(20) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$
radiance $6.4364099007(20) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$
radiant intensity $0.18023783420686(69)$ $\left[\text{W}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau\cdot 2^{2}$
spectral flux $3.40600143947(52) \times 10^{9}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-5}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2^{3}$
spectral exposure $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$
sound exposure $2.0937769958(19) \times 10^{10}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{a}_0^{-8}\right]$ $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-6}\tau^{5}2^{7}$
impedance $4.8025220034(44) \times 10^{27}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$
specific impedance $1.34484313146(82) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-4}\tau^{3}2^{4}$
admittance $2.0822392886(19) \times 10^{-28}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{a}_0^{6}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$
compliance $0.00064230485586(20)$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{a}_0^{4}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$
inertance $1.1616745202(11) \times 10^{11}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-6}\tau^{4}2^{5}$

Electromagnetic Ratios

Name Quantity Product
charge $1.60217663444(12) \times 10^{-19}$ $\left[\text{C}\right]/\left[\text{e}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\alpha^{1/2}\tau^{-1/2}2^{7/2}5^{7/2}$
charge density $1.08120238487(41) \times 10^{12}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{a}_0^{-3}\text{e}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{3}\alpha^{-5/2}\tau^{5/2}2^{13/2}5^{7/2}$
linear charge density $3.02767504236(23) \times 10^{-9}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-1/2}\tau^{1/2}2^{9/2}5^{7/2}$
exposure $1.75882001124(67) \times 10^{11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{5/2}5^{7/2}$
mobility $0.00315019786041(72)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{5/2}\alpha^{3/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
current $0.00662361823932(51)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{1/2}\tau^{1/2}2^{9/2}5^{7/2}$
current density $2.36533701160(54) \times 10^{18}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-4}\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{3}\alpha^{-3/2}\tau^{5/2}2^{13/2}5^{7/2}$
resistance $4108.23589999(63)$ $\left[\Omega\right]/\left[\text{e}^{-2}\right]$ $\text{c}\cdot \alpha^{-1}2^{-7}5^{-7}$
conductance $0.000243413480712(37)$ $\left[\text{S}\right]/\left[\text{e}^{2}\right]$ $\text{c}^{-1}\alpha\cdot 2^{7}5^{7}$
resistivity $2.1739848152842(42) \times 10^{-7}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{a}_0\cdot \text{e}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\tau^{-1}2^{-8}5^{-7}$
conductivity $4.5998481358725(88) \times 10^{6}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\text{e}^{2}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \tau\cdot 2^{8}5^{7}$
capacitance $5.88789053373(90) \times 10^{-21}$ $\left[\text{F}\right]/\left[\text{a}_0^{2}\text{e}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{6}5^{7}$
inductance $9.9373474284(15) \times 10^{-14}$ $\left[\text{H}\right]/\left[\text{a}_0^{2}\text{e}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-8}5^{-7}$
reluctance $1.00630475809(15) \times 10^{13}$ $\left[\text{H}^{-1}\right]/\left[\text{a}_0^{-2}\text{e}^{2}\right]$ $\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2^{8}5^{7}$
permeance $9.9373474284(15) \times 10^{-14}$ $\left[\text{H}\right]/\left[\text{a}_0^{2}\text{e}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-8}5^{-7}$
permittivity $1.1126500560536183 \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{2}\right]$ $\text{c}^{-2}2^{7}5^{7}$
permeability $0.00187788650450(58)$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{-2}\right]$ $\alpha^{-2}2^{-7}5^{-7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $0.16267259820(12)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $1.24384033025(29) \times 10^{-5}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-3/2}\tau^{1/2}2^{-5/2}5^{-7/2}$
electric potential $27.2113862386(21)$ $\left[\text{V}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}\cdot \alpha^{-1/2}\tau^{1/2}2^{-5/2}5^{-7/2}$
magnetic potential $0.00662361823932(51)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{1/2}\tau^{1/2}2^{9/2}5^{7/2}$
electric field $5.1422067462(12) \times 10^{11}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-3}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}^{2}\alpha^{-3/2}\tau^{3/2}2^{-3/2}5^{-7/2}$
magnetic field $1.251682442640(96) \times 10^{8}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-3}\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-1/2}\tau^{3/2}2^{11/2}5^{7/2}$
electric flux $1.43996454745(11) \times 10^{-9}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{a}_0^{-1}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\alpha^{1/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
magnetic flux $6.58211956771(50) \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\alpha^{-1/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
electric displacement $57.214766244(13)$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{2}\alpha^{-3/2}\tau^{3/2}2^{11/2}5^{7/2}$
magnetic flux density $235051.756695(90)$ $\left[\text{T}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-5/2}\tau^{3/2}2^{-3/2}5^{-7/2}$
electric dipole moment $8.4783536278(19) \times 10^{-30}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{a}_0\cdot \text{e}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-3/2}2^{5/2}5^{7/2}$
magnetic dipole moment $1.85480201617(71) \times 10^{-23}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-3/2}2^{5/2}5^{7/2}$
electric polarizability $1.64877727525(76) \times 10^{-41}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{a}_0^{4}\text{e}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{4}5^{7}$
magnetic polarizability $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
magnetic moment $3.48310767467(27) \times 10^{-26}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{a}_0\cdot \text{e}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{1/2}\tau^{-3/2}2^{-9/2}5^{-7/2}$
specific magnetization $2.6153035026(10) \times 10^{-5}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ $\hbar^{1/2}\text{c}^{-3/2}\text{R}_{\infty}^{2}\alpha^{-5/2}\tau^{3/2}2^{11/2}5^{7/2}$
pole strength $3.50506782596(81) \times 10^{-13}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ $\hbar^{1/2}\text{c}^{1/2}\alpha^{3/2}\tau^{-1/2}2^{7/2}5^{7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $315775.024913(97)$ $\left[\text{K}\right]/\left[\text{a}_0^{-2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\alpha^{2}\mu_\text{eu}\cdot 2^{-3}5^{-3}$
entropy $1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$
specific entropy $1.515633817565(44) \times 10^{7}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}2^{3}5^{3}$
volume heat capacity $9.3170812685(71) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{a}_0^{-3}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\mu_\text{eu}^{-1}\tau^{3}2^{7}5^{3}$
thermal conductivity $10786.1647400(50)$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{a}_0^{-3}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}^{-1}\tau^{2}2^{6}5^{3}$
thermal conductance $5.7077925734(18) \times 10^{-7}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\mu_\text{eu}^{-1}\tau\cdot 2^{5}5^{3}$
thermal resistivity $9.2711359794(43) \times 10^{-5}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{a}_0^{3}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}\cdot \tau^{-2}2^{-6}5^{-3}$
thermal resistance $1.75199078652(54) \times 10^{6}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{a}_0^{2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\mu_\text{eu}\cdot \tau^{-1}2^{-5}5^{-3}$
thermal expansion $3.16681156237(97) \times 10^{-6}$ $\left[\text{K}^{-1}\right]/\left[\text{a}_0^{2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$
lapse rate $5.96728314083(93) \times 10^{15}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{a}_0^{-3}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \mu_\text{eu}\cdot \tau\cdot 2^{-2}5^{-3}$

Molar Ratios

Name Quantity Product
molar mass $0.001$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $2^{-3}5^{-3}$
molality $1000.0$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $2^{3}5^{3}$
molar amount $9.1093837016(28) \times 10^{-28}$ $\left[\text{mol}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{4}5^{3}$
molarity $6147.3168258(47)$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{a}_0^{-3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{7}5^{3}$
molar volume $0.00016267259820(12)$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{a}_0^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-7}5^{-3}$
molar entropy $15156.33817565(44)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$
molar energy $4.7859930650(15) \times 10^{9}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ $\text{c}^{2}\alpha^{2}2^{-3}5^{-3}$
molar conductivity $1.41402394541(87) \times 10^{13}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{2}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{2}5^{4}$
molar susceptibility $0.00016267259820(12)$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{a}_0^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-7}5^{-3}$
catalysis $3.7659443246(12) \times 10^{-11}$ $\left[\text{kat}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{5}5^{3}$
specificity $6.7251086135(52) \times 10^{12}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{a}_0\right]$ $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-3}\alpha^{5}\tau^{-2}2^{-6}5^{-3}$
diffusion flux $7.8686790253(48) \times 10^{-24}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{5}5^{3}$

Photometric Ratios

Name Quantity Product
luminous flux $123.10598966248(47)$ $\left[\text{cd}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau\cdot 2^{2}$
luminous intensity $123.10598966248(47)$ $\left[\text{cd}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau\cdot 2^{2}$
luminance $4.3961946957(13) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$
illuminance $4.3961946957(13) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{a}_0^{-6}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$
luminous energy $2.9777914890339(57) \times 10^{-15}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{a}_0^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot 2$
luminous exposure $1.06338864460(33) \times 10^{6}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{a}_0^{-4}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified Hartree Metric
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{a}_0^{2}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{a}_0^{2}$ $\text{s}$
length $\text{L}$ $\text{a}_0$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{a}_0$ $\text{m}$
area $\text{L}^{2}$ $\text{a}_0^{2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{a}_0^{2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{a}_0^{3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{a}_0^{-1}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{a}_0^{-1}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{a}_0^{-2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{a}_0^{-3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{a}_0^{-2}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{a}_0^{-2}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{a}_0^{-4}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\text{a}_0$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{a}_0^{-1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{a}_0^{-3}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{a}_0^{-5}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{a}_0^{-7}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{a}_0^{-9}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{a}_0^{-11}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{a}_0$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{a}_0^{2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{a}_0^{-2}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\mathbb{1}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\mathbb{1}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified Hartree Metric
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\mathbb{1}$ $\text{kg}$
mass $\text{M}$ $\mathbb{1}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{a}_0^{-2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{a}_0^{-1}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{a}_0^{-2}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{a}_0^{-3}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{a}_0^{-6}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{a}_0^{3}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{a}_0^{-3}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{a}_0^{-3}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{a}_0^{-5}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{a}_0^{5}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{a}_0^{-3}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\mathbb{1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{a}_0^{2}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{a}_0^{-1}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{a}_0^{-1}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{a}_0^{-5}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{a}_0^{-2}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{a}_0^{-2}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{a}_0^{-4}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{a}_0^{-4}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{a}_0^{-7}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{a}_0^{-6}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{a}_0^{-6}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{a}_0^{-4}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{a}_0^{-5}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{a}_0^{-2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{a}_0^{-8}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{a}_0^{-6}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{a}_0^{-4}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{a}_0^{6}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{a}_0^{4}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{a}_0^{-4}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified Hartree Metric
charge $\text{Q}$ $\text{e}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{a}_0^{-3}\text{e}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{a}_0^{-1}\text{e}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{e}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{a}_0^{-2}\text{e}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{a}_0^{-2}\text{e}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{a}_0^{-4}\text{e}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{e}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{e}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{a}_0\cdot \text{e}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{a}_0^{-1}\text{e}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{a}_0^{2}\text{e}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{a}_0^{2}\text{e}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{a}_0^{-2}\text{e}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{a}_0^{2}\text{e}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{a}_0\cdot \text{e}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{a}_0\cdot \text{e}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{a}_0^{3}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{a}_0^{-1}\text{e}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{a}_0^{-2}\text{e}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{a}_0^{-2}\text{e}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{a}_0^{-3}\text{e}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{a}_0^{-3}\text{e}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{a}_0^{-1}\text{e}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{a}_0^{-2}\text{e}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{a}_0^{-2}\text{e}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{a}_0\cdot \text{e}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{a}_0^{4}\text{e}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{a}_0^{3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{a}_0\cdot \text{e}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{a}_0^{-1}\text{e}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{a}_0^{-1}\text{e}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified Hartree Metric
temperature $\Theta$ $\text{a}_0^{-2}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{a}_0^{-3}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{a}_0^{-3}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{a}_0^{-2}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{a}_0^{3}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{a}_0^{2}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{a}_0^{2}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{a}_0^{-3}$ $\text{m}^{-1}\text{K}$

Molar

Unified Hartree Metric
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\mathbb{1}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{a}_0^{-3}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{a}_0^{3}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{a}_0^{-2}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{a}_0\cdot \text{e}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{a}_0^{3}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{a}_0^{-2}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{a}_0$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\mathbb{1}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified Hartree Metric
luminous flux $\text{J}$ $\text{a}_0^{-4}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{a}_0^{-4}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{a}_0^{-6}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{a}_0^{-6}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{a}_0^{-2}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{a}_0^{-4}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$