Hartree -> SI2019
data derived with UnitSystems.jl
Kinematic Ratios
Name | Quantity | Product |
---|---|---|
angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
solid angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
time | $2.4188843265857(46) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{a}_0^{2}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
angular time | $2.4188843265857(46) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{a}_0^{2}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
length | $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ | $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$ |
angular length | $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ | $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$ |
area | $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
angular area | $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
volume | $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
wavenumber | $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$ |
angular wavenumber | $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$ |
fuel efficiency | $3.5710648261(11) \times 10^{20}$ $\left[\text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
number density | $6.7483344946(31) \times 10^{30}$ $\left[\text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
frequency | $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
angular frequency | $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
frequency drift | $1.7091091492390(65) \times 10^{33}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ | $\text{c}^{2}\text{R}_{\infty}^{2}\tau^{2}2^{2}$ |
stagnance | $4.57102890440(70) \times 10^{-7}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\text{a}_0\right]$ | $\text{c}^{-1}\alpha^{-1}$ |
speed | $2.18769126364(34) \times 10^{6}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ | $\text{c}\cdot \alpha$ |
acceleration | $9.0442161272(14) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2$ |
jerk | $3.73900315439(57) \times 10^{39}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{a}_0^{-5}\right]$ | $\text{c}^{3}\text{R}_{\infty}^{2}\alpha\cdot \tau^{2}2^{2}$ |
snap | $1.54575525307(24) \times 10^{56}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{a}_0^{-7}\right]$ | $\text{c}^{4}\text{R}_{\infty}^{3}\alpha\cdot \tau^{3}2^{3}$ |
crackle | $6.39036450021(98) \times 10^{72}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{a}_0^{-9}\right]$ | $\text{c}^{5}\text{R}_{\infty}^{4}\alpha\cdot \tau^{4}2^{4}$ |
pop | $2.64186444551(41) \times 10^{89}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{a}_0^{-11}\right]$ | $\text{c}^{6}\text{R}_{\infty}^{5}\alpha\cdot \tau^{5}2^{5}$ |
volume flow | $6.1261594795(28) \times 10^{-15}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{a}_0\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-2}$ |
etendue | $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
photon intensity | $4.1341373335183(79) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
photon irradiance | $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
photon radiance | $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
Mechanical Ratios
Name | Quantity | Product |
---|---|---|
inertia | $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ |
mass | $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ |
mass flow | $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ | $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$ |
linear density | $1.72142403601(79) \times 10^{-20}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau\cdot 2^{2}$ |
area density | $3.2530199724(20) \times 10^{-10}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-4}\tau^{2}2^{3}$ |
density | $6.1473168258(47)$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$ |
specific weight | $5.5597661975(34) \times 10^{23}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-4}\tau^{4}2^{5}$ |
specific volume | $0.16267259820(12)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$ |
force | $8.2387234983(13) \times 10^{-8}$ $\left[\text{N}\right]/\left[\text{a}_0^{-3}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot 2^{2}$ |
specific force | $9.0442161272(14) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2$ |
gravity force | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
pressure | $2.9421015697(14) \times 10^{13}$ $\left[\text{Pa}\right]/\left[\text{a}_0^{-5}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{4}$ |
compressibility | $3.3989309217(16) \times 10^{-14}$ $\left[\text{Pa}^{-1}\right]/\left[\text{a}_0^{5}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-4}$ |
viscosity | $0.00071166033741(33)$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{a}_0^{-3}\right]$ | $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-3}\tau^{2}2^{3}$ |
diffusivity | $0.000115767636121(35)$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
rotational inertia | $2.5508872409632(49) \times 10^{-51}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{a}_0^{2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$ |
impulse | $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{a}_0^{-1}\right]$ | $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$ |
momentum | $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{a}_0^{-1}\right]$ | $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$ |
angular momentum | $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \tau^{-1}$ |
yank | $3.40600143947(52) \times 10^{9}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-5}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2^{3}$ |
energy | $4.3597447222072(83) \times 10^{-18}$ $\left[\text{J}\right]/\left[\text{a}_0^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ |
specific energy | $4.7859930650(15) \times 10^{12}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{c}^{2}\alpha^{2}$ |
action | $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \tau^{-1}$ |
fluence | $1556.89310283(48)$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$ |
power | $0.18023783420686(69)$ $\left[\text{W}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau\cdot 2^{2}$ |
power density | $1.21630519382(56) \times 10^{30}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{a}_0^{-7}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-3}\tau^{4}2^{5}$ |
irradiance | $6.4364099007(20) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$ |
radiance | $6.4364099007(20) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$ |
radiant intensity | $0.18023783420686(69)$ $\left[\text{W}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau\cdot 2^{2}$ |
spectral flux | $3.40600143947(52) \times 10^{9}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{a}_0^{-5}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2^{3}$ |
spectral exposure | $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ | $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$ |
sound exposure | $2.0937769958(19) \times 10^{10}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{a}_0^{-8}\right]$ | $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-6}\tau^{5}2^{7}$ |
impedance | $4.8025220034(44) \times 10^{27}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$ |
specific impedance | $1.34484313146(82) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-4}\tau^{3}2^{4}$ |
admittance | $2.0822392886(19) \times 10^{-28}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{a}_0^{6}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$ |
compliance | $0.00064230485586(20)$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{a}_0^{4}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$ |
inertance | $1.1616745202(11) \times 10^{11}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-6}\tau^{4}2^{5}$ |
Electromagnetic Ratios
Name | Quantity | Product |
---|---|---|
charge | $1.602176634 \times 10^{-19}$ $\left[\text{C}\right]/\left[\text{e}\right]$ | $\text{e}$ |
charge density | $1.08120238457(50) \times 10^{12}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{a}_0^{-3}\text{e}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
linear charge density | $3.02767504154(46) \times 10^{-9}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ | $\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$ |
exposure | $1.75882001076(54) \times 10^{11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mobility | $0.00315019786127(97)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ | $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha^{2}\tau^{-1}$ |
current | $0.006623618237510(13)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
current density | $2.36533701095(73) \times 10^{18}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-4}\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{3}2^{3}$ |
resistance | $4108.2359022276605$ $\left[\Omega\right]/\left[\text{e}^{-2}\right]$ | $\hbar\cdot \text{e}^{-2}\tau^{-1}$ |
conductance | $0.00024341348057879472$ $\left[\text{S}\right]/\left[\text{e}^{2}\right]$ | $\hbar^{-1}\text{e}^{2}\tau$ |
resistivity | $2.17398481647(33) \times 10^{-7}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{a}_0\cdot \text{e}^{-2}\right]$ | $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-2}2^{-1}$ |
conductivity | $4.59984813336(70) \times 10^{6}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\text{e}^{2}\right]$ | $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-1}\tau^{2}2$ |
capacitance | $5.887890530517(11) \times 10^{-21}$ $\left[\text{F}\right]/\left[\text{a}_0^{2}\text{e}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}2^{-1}$ |
inductance | $9.937347433815(19) \times 10^{-14}$ $\left[\text{H}\right]/\left[\text{a}_0^{2}\text{e}^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$ |
reluctance | $1.0063047575424(19) \times 10^{13}$ $\left[\text{H}^{-1}\right]/\left[\text{a}_0^{-2}\text{e}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \tau^{2}2$ |
permeance | $9.937347433815(19) \times 10^{-14}$ $\left[\text{H}\right]/\left[\text{a}_0^{2}\text{e}^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$ |
permittivity | $1.11265005545(17) \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
permeability | $0.00187788650552(29)$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{-2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha^{-1}\tau^{-1}$ |
susceptibility | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
specific susceptibility | $0.16267259820(12)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$ |
demagnetizing factor | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
vector potential | $1.24384033059(19) \times 10^{-5}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-1}\text{e}^{-1}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-1}2$ |
electric potential | $27.211386245989(52)$ $\left[\text{V}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot 2$ |
magnetic potential | $0.006623618237510(13)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
electric field | $5.14220674764(79) \times 10^{11}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{a}_0^{-3}\text{e}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot 2^{2}$ |
magnetic field | $1.25168244230(19) \times 10^{8}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-3}\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2^{2}$ |
electric flux | $1.43996454784(22) \times 10^{-9}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{a}_0^{-1}\text{e}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha\cdot \tau^{-1}$ |
magnetic flux | $6.582119569509067 \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\text{e}^{-1}\right]$ | $\hbar\cdot \text{e}^{-1}\tau^{-1}$ |
electric displacement | $57.214766229(18)$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{a}_0^{-2}\text{e}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
magnetic flux density | $235051.756759(72)$ $\left[\text{T}\right]/\left[\text{a}_0^{-2}\text{e}^{-1}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$ |
electric dipole moment | $8.4783536255(13) \times 10^{-30}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{a}_0\cdot \text{e}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$ |
magnetic dipole moment | $1.85480201566(57) \times 10^{-23}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
electric polarizability | $1.64877727435(51) \times 10^{-41}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{a}_0^{4}\text{e}^{2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$ |
magnetic polarizability | $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^{3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
magnetic moment | $3.48310767562(53) \times 10^{-26}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{a}_0\cdot \text{e}^{-1}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-2}2^{-1}$ |
specific magnetization | $2.6153035019(12) \times 10^{-5}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ | $\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{2}$ |
pole strength | $3.50506782501(54) \times 10^{-13}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{a}_0^{-1}\text{e}\right]$ | $\text{c}\cdot \text{e}\cdot \alpha$ |
Thermodynamic Ratios
Name | Quantity | Product |
---|---|---|
temperature | $315775.02480407(60)$ $\left[\text{K}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$ |
entropy | $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{k}_\text{B}$ |
specific entropy | $1.51563381809(46) \times 10^{7}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
volume heat capacity | $9.3170812717(43) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{k}_\text{B}\cdot \text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
thermal conductivity | $10786.1647437(17)$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2^{2}$ |
thermal conductance | $5.707792575385(11) \times 10^{-7}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$ |
thermal resistivity | $9.2711359762(14) \times 10^{-5}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{a}_0^{3}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-2}2^{-2}$ |
thermal resistance | $1.7519907859171(34) \times 10^{6}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{a}_0^{2}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
thermal expansion | $3.1668115634555(61) \times 10^{-6}$ $\left[\text{K}^{-1}\right]/\left[\text{a}_0^{2}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}2^{-1}$ |
lapse rate | $5.96728313877(91) \times 10^{15}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot 2^{2}$ |
Molar Ratios
Name | Quantity | Product |
---|---|---|
molar mass | $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality | $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molar amount | $9.10938370469(26) \times 10^{-28}$ $\left[\text{mol}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molarity | $6147.3168279(28)$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{a}_0^{-3}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot \tau^{3}2^{3}$ |
molar volume | $0.000162672598142(75)$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{a}_0^{3}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar entropy | $15156.33817565(44)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$ |
molar energy | $4.78599306335(14) \times 10^{9}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \mu_\text{eu}^{-1}2$ |
molar conductivity | $1.41402394415(22) \times 10^{13}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{a}_0\cdot \text{e}^{2}\right]$ | $\text{N}_\text{A}\cdot \hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot \mu_\text{eu}^{-1}2^{-1}$ |
molar susceptibility | $0.000162672598142(75)$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{a}_0^{3}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
catalysis | $3.76594432589(11) \times 10^{-11}$ $\left[\text{kat}\right]/\left[\text{a}_0^{-2}\right]$ | $\text{N}_\text{A}^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \mu_\text{eu}\cdot \tau\cdot 2$ |
specificity | $6.7251086112(31) \times 10^{12}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{a}_0\right]$ | $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-2}2^{-2}$ |
diffusion flux | $7.8686790280(24) \times 10^{-24}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}\cdot \tau\cdot 2$ |
Photometric Ratios
Name | Quantity | Product |
---|---|---|
luminous flux | $123.10598966248(47)$ $\left[\text{cd}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau\cdot 2^{2}$ |
luminous intensity | $123.10598966248(47)$ $\left[\text{cd}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau\cdot 2^{2}$ |
luminance | $4.3961946957(13) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$ |
illuminance | $4.3961946957(13) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{a}_0^{-6}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{4}$ |
luminous energy | $2.9777914890339(57) \times 10^{-15}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{a}_0^{-2}\right]$ | $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot 2$ |
luminous exposure | $1.06338864460(33) \times 10^{6}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{a}_0^{-4}\right]$ | $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$ |
luminous efficacy | $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{K}_\text{cd}$ |
Kinematic
Unified | Hartree | SI2019 | |
---|---|---|---|
angle | $\text{A}$ | $\mathbb{1}$ | $\mathbb{1}$ |
solid angle | $\text{A}^{2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
time | $\text{T}$ | $\text{a}_0^{2}$ | $\text{s}$ |
angular time | $\text{T}\cdot \text{A}^{-1}$ | $\text{a}_0^{2}$ | $\text{s}$ |
length | $\text{L}$ | $\text{a}_0$ | $\text{m}$ |
angular length | $\text{L}\cdot \text{A}^{-1}$ | $\text{a}_0$ | $\text{m}$ |
area | $\text{L}^{2}$ | $\text{a}_0^{2}$ | $\text{m}^{2}$ |
angular area | $\text{L}^{2}\text{A}^{-2}$ | $\text{a}_0^{2}$ | $\text{m}^{2}$ |
volume | $\text{L}^{3}$ | $\text{a}_0^{3}$ | $\text{m}^{3}$ |
wavenumber | $\text{L}^{-1}$ | $\text{a}_0^{-1}$ | $\text{m}^{-1}$ |
angular wavenumber | $\text{L}^{-1}\text{A}$ | $\text{a}_0^{-1}$ | $\text{m}^{-1}$ |
fuel efficiency | $\text{L}^{-2}$ | $\text{a}_0^{-2}$ | $\text{m}^{-2}$ |
number density | $\text{L}^{-3}$ | $\text{a}_0^{-3}$ | $\text{m}^{-3}$ |
frequency | $\text{T}^{-1}$ | $\text{a}_0^{-2}$ | $\text{Hz}$ |
angular frequency | $\text{T}^{-1}\text{A}$ | $\text{a}_0^{-2}$ | $\text{Hz}$ |
frequency drift | $\text{T}^{-2}$ | $\text{a}_0^{-4}$ | $\text{Hz} \cdot \text{s}^{-1}$ |
stagnance | $\text{L}^{-1}\text{T}$ | $\text{a}_0$ | $\text{m}^{-1}\text{s}$ |
speed | $\text{L}\cdot \text{T}^{-1}$ | $\text{a}_0^{-1}$ | $\text{m}\cdot \text{s}^{-1}$ |
acceleration | $\text{L}\cdot \text{T}^{-2}$ | $\text{a}_0^{-3}$ | $\text{m}\cdot \text{s}^{-2}$ |
jerk | $\text{L}\cdot \text{T}^{-3}$ | $\text{a}_0^{-5}$ | $\text{m}\cdot \text{s}^{-3}$ |
snap | $\text{L}\cdot \text{T}^{-4}$ | $\text{a}_0^{-7}$ | $\text{m}\cdot \text{s}^{-4}$ |
crackle | $\text{L}\cdot \text{T}^{-5}$ | $\text{a}_0^{-9}$ | $\text{m}\cdot \text{s}^{-5}$ |
pop | $\text{L}\cdot \text{T}^{-6}$ | $\text{a}_0^{-11}$ | $\text{m}\cdot \text{s}^{-6}$ |
volume flow | $\text{L}^{3}\text{T}^{-1}$ | $\text{a}_0$ | $\text{m}^{3}\text{s}^{-1}$ |
etendue | $\text{L}^{2}\text{A}^{2}$ | $\text{a}_0^{2}$ | $\text{m}^{2}$ |
photon intensity | $\text{T}^{-1}\text{A}^{-2}$ | $\text{a}_0^{-2}$ | $\text{Hz}$ |
photon irradiance | $\text{L}^{-2}\text{T}$ | $\mathbb{1}$ | $\text{Hz} \cdot \text{m}^{-2}$ |
photon radiance | $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ | $\mathbb{1}$ | $\text{Hz} \cdot \text{m}^{-2}$ |
Mechanical
Unified | Hartree | SI2019 | |
---|---|---|---|
inertia | $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ | $\mathbb{1}$ | $\text{kg}$ |
mass | $\text{M}$ | $\mathbb{1}$ | $\text{kg}$ |
mass flow | $\text{M}\cdot \text{T}^{-1}$ | $\text{a}_0^{-2}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density | $\text{M}\cdot \text{L}^{-1}$ | $\text{a}_0^{-1}$ | $\text{kg}\cdot \text{m}^{-1}$ |
area density | $\text{M}\cdot \text{L}^{-2}$ | $\text{a}_0^{-2}$ | $\text{kg}\cdot \text{m}^{-2}$ |
density | $\text{M}\cdot \text{L}^{-3}$ | $\text{a}_0^{-3}$ | $\text{kg}\cdot \text{m}^{-3}$ |
specific weight | $\text{F}\cdot \text{L}^{-3}$ | $\text{a}_0^{-6}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ |
specific volume | $\text{M}^{-1}\text{L}^{3}$ | $\text{a}_0^{3}$ | $\text{kg}^{-1}\text{m}^{3}$ |
force | $\text{F}$ | $\text{a}_0^{-3}$ | $\text{N}$ |
specific force | $\text{F}\cdot \text{M}^{-1}$ | $\text{a}_0^{-3}$ | $\text{m}\cdot \text{s}^{-2}$ |
gravity force | $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
pressure | $\text{F}\cdot \text{L}^{-2}$ | $\text{a}_0^{-5}$ | $\text{Pa}$ |
compressibility | $\text{F}^{-1}\text{L}^{2}$ | $\text{a}_0^{5}$ | $\text{Pa}^{-1}$ |
viscosity | $\text{F}\cdot \text{L}^{-2}\text{T}$ | $\text{a}_0^{-3}$ | $\text{Pa} \cdot \text{s}$ |
diffusivity | $\text{L}^{2}\text{T}^{-1}$ | $\mathbb{1}$ | $\text{m}^{2}\text{s}^{-1}$ |
rotational inertia | $\text{M}\cdot \text{L}^{2}$ | $\text{a}_0^{2}$ | $\text{kg}\cdot \text{m}^{2}$ |
impulse | $\text{F}\cdot \text{T}$ | $\text{a}_0^{-1}$ | $\text{N} \cdot \text{s}$ |
momentum | $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{a}_0^{-1}$ | $\text{N} \cdot \text{s}$ |
angular momentum | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{s}$ |
yank | $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ | $\text{a}_0^{-5}$ | $\text{N} \cdot \text{s}^{-1}$ |
energy | $\text{F}\cdot \text{L}$ | $\text{a}_0^{-2}$ | $\text{J}$ |
specific energy | $\text{F}\cdot \text{M}^{-1}\text{L}$ | $\text{a}_0^{-2}$ | $\text{J} \cdot \text{kg}^{-1}$ |
action | $\text{F}\cdot \text{L}\cdot \text{T}$ | $\mathbb{1}$ | $\text{J} \cdot \text{s}$ |
fluence | $\text{F}\cdot \text{L}^{-1}$ | $\text{a}_0^{-4}$ | $\text{N} \cdot \text{m}^{-1}$ |
power | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{a}_0^{-4}$ | $\text{W}$ |
power density | $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ | $\text{a}_0^{-7}$ | $\text{W} \cdot \text{m}^{-3}$ |
irradiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ | $\text{a}_0^{-6}$ | $\text{W} \cdot \text{m}^{-2}$ |
radiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ | $\text{a}_0^{-6}$ | $\text{W} \cdot \text{m}^{-2}$ |
radiant intensity | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ | $\text{a}_0^{-4}$ | $\text{W}$ |
spectral flux | $\text{F}\cdot \text{T}^{-1}$ | $\text{a}_0^{-5}$ | $\text{N} \cdot \text{s}^{-1}$ |
spectral exposure | $\text{F}\cdot \text{L}^{-1}\text{T}$ | $\text{a}_0^{-2}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure | $\text{F}^{2}\text{L}^{-4}\text{T}$ | $\text{a}_0^{-8}$ | $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance | $\text{F}\cdot \text{L}^{-5}\text{T}$ | $\text{a}_0^{-6}$ | $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ |
specific impedance | $\text{F}\cdot \text{L}^{-3}\text{T}$ | $\text{a}_0^{-4}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ |
admittance | $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ | $\text{a}_0^{6}$ | $\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance | $\text{M}^{-1}\text{T}^{2}$ | $\text{a}_0^{4}$ | $\text{m} \cdot \text{N}^{-1}$ |
inertance | $\text{M}\cdot \text{L}^{-4}$ | $\text{a}_0^{-4}$ | $\text{kg}\cdot \text{m}^{-4}$ |
Electromagnetic
Unified | Hartree | SI2019 | |
---|---|---|---|
charge | $\text{Q}$ | $\text{e}$ | $\text{C}$ |
charge density | $\text{L}^{-3}\text{Q}$ | $\text{a}_0^{-3}\text{e}$ | $\text{m}^{-3}\text{C}$ |
linear charge density | $\text{L}^{-1}\text{Q}$ | $\text{a}_0^{-1}\text{e}$ | $\text{m}^{-1}\text{C}$ |
exposure | $\text{M}^{-1}\text{Q}$ | $\text{e}$ | $\text{kg}^{-1}\text{C}$ |
mobility | $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ | $\text{a}_0^{-2}\text{e}^{-1}$ | $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ |
current | $\text{T}^{-1}\text{Q}$ | $\text{a}_0^{-2}\text{e}$ | $\text{s}^{-1}\text{C}$ |
current density | $\text{L}^{-2}\text{T}^{-1}\text{Q}$ | $\text{a}_0^{-4}\text{e}$ | $\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ | $\text{e}^{-2}$ | $\Omega$ |
conductance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ | $\text{e}^{2}$ | $\text{S}$ |
resistivity | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ | $\text{a}_0\cdot \text{e}^{-2}$ | $\Omega \cdot \text{m}$ |
conductivity | $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ | $\text{a}_0^{-1}\text{e}^{2}$ | $\text{S} \cdot \text{m}^{-1}$ |
capacitance | $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ | $\text{a}_0^{2}\text{e}^{2}$ | $\text{F}$ |
inductance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ | $\text{a}_0^{2}\text{e}^{-2}$ | $\text{H}$ |
reluctance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ | $\text{a}_0^{-2}\text{e}^{2}$ | $\text{H}^{-1}$ |
permeance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{a}_0^{2}\text{e}^{-2}$ | $\text{H}$ |
permittivity | $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ | $\text{a}_0\cdot \text{e}^{2}$ | $\text{F} \cdot \text{m}^{-1}$ |
permeability | $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{a}_0\cdot \text{e}^{-2}$ | $\text{H} \cdot \text{m}^{-1}$ |
susceptibility | $\text{R}^{-1}$ | $\mathbb{1}$ | $\mathbb{1}$ |
specific susceptibility | $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{a}_0^{3}$ | $\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor | $\text{R}$ | $\mathbb{1}$ | $\mathbb{1}$ |
vector potential | $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{a}_0^{-1}\text{e}^{-1}$ | $\text{Wb} \cdot \text{m}^{-1}$ |
electric potential | $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ | $\text{a}_0^{-2}\text{e}^{-1}$ | $\text{V}$ |
magnetic potential | $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{a}_0^{-2}\text{e}$ | $\text{s}^{-1}\text{C}$ |
electric field | $\text{F}\cdot \text{Q}^{-1}$ | $\text{a}_0^{-3}\text{e}^{-1}$ | $\text{V} \cdot \text{m}^{-1}$ |
magnetic field | $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{a}_0^{-3}\text{e}$ | $\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux | $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ | $\text{a}_0^{-1}\text{e}^{-1}$ | $\text{V} \cdot \text{m}$ |
magnetic flux | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{e}^{-1}$ | $\text{Wb}$ |
electric displacement | $\text{L}^{-2}\text{Q}\cdot \text{R}$ | $\text{a}_0^{-2}\text{e}$ | $\text{m}^{-2}\text{C}$ |
magnetic flux density | $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{a}_0^{-2}\text{e}^{-1}$ | $\text{T}$ |
electric dipole moment | $\text{L}\cdot \text{Q}$ | $\text{a}_0\cdot \text{e}$ | $\text{m}\cdot \text{C}$ |
magnetic dipole moment | $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{e}$ | $\text{J} \cdot \text{T}^{-1}$ |
electric polarizability | $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ | $\text{a}_0^{4}\text{e}^{2}$ | $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic polarizability | $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{a}_0^{3}$ | $\text{m}^{3}$ |
magnetic moment | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{a}_0\cdot \text{e}^{-1}$ | $\text{Wb} \cdot \text{m}$ |
specific magnetization | $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ | $\text{a}_0^{-1}\text{e}$ | $\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength | $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{a}_0^{-1}\text{e}$ | $\text{m}\cdot \text{s}^{-1}\text{C}$ |
Thermodynamic
Unified | Hartree | SI2019 | |
---|---|---|---|
temperature | $\Theta$ | $\text{a}_0^{-2}$ | $\text{K}$ |
entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{K}^{-1}$ |
specific entropy | $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ |
volume heat capacity | $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ | $\text{a}_0^{-3}$ | $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
thermal conductivity | $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{a}_0^{-3}$ | $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ |
thermal conductance | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{a}_0^{-2}$ | $\text{W} \cdot \text{K}^{-1}$ |
thermal resistivity | $\text{F}^{-1}\text{T}\cdot \Theta$ | $\text{a}_0^{3}$ | $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ |
thermal resistance | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ | $\text{a}_0^{2}$ | $\text{K} \cdot \text{W}^{-1}$ |
thermal expansion | $\Theta^{-1}$ | $\text{a}_0^{2}$ | $\text{K}^{-1}$ |
lapse rate | $\text{L}^{-1}\Theta$ | $\text{a}_0^{-3}$ | $\text{m}^{-1}\text{K}$ |
Molar
Unified | Hartree | SI2019 | |
---|---|---|---|
molar mass | $\text{M}\cdot \text{N}^{-1}$ | $\mathbb{1}$ | $\text{kg}\cdot \text{mol}^{-1}$ |
molality | $\text{M}^{-1}\text{N}$ | $\mathbb{1}$ | $\text{kg}^{-1}\text{mol}$ |
molar amount | $\text{N}$ | $\mathbb{1}$ | $\text{mol}$ |
molarity | $\text{L}^{-3}\text{N}$ | $\text{a}_0^{-3}$ | $\text{m}^{-3}\text{mol}$ |
molar volume | $\text{L}^{3}\text{N}^{-1}$ | $\text{a}_0^{3}$ | $\text{m}^{3}\text{mol}^{-1}$ |
molar entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ |
molar energy | $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ | $\text{a}_0^{-2}$ | $\text{J} \cdot \text{mol}^{-1}$ |
molar conductivity | $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ | $\text{a}_0\cdot \text{e}^{2}$ | $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ |
molar susceptibility | $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ | $\text{a}_0^{3}$ | $\text{m}^{3}\text{mol}^{-1}$ |
catalysis | $\text{T}^{-1}\text{N}$ | $\text{a}_0^{-2}$ | $\text{kat}$ |
specificity | $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ | $\text{a}_0$ | $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux | $\text{L}^{-2}\text{T}\cdot \text{N}$ | $\mathbb{1}$ | $\text{m}^{-2}\text{s}\cdot \text{mol}$ |
Photometric
Unified | Hartree | SI2019 | |
---|---|---|---|
luminous flux | $\text{J}$ | $\text{a}_0^{-4}$ | $\text{cd}$ |
luminous intensity | $\text{J}\cdot \text{A}^{-2}$ | $\text{a}_0^{-4}$ | $\text{cd}$ |
luminance | $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ | $\text{a}_0^{-6}$ | $\text{lx}$ |
illuminance | $\text{L}^{-2}\text{J}$ | $\text{a}_0^{-6}$ | $\text{lx}$ |
luminous energy | $\text{T}\cdot \text{J}$ | $\text{a}_0^{-2}$ | $\text{s}\cdot \text{lm}$ |
luminous exposure | $\text{L}^{-2}\text{T}\cdot \text{J}$ | $\text{a}_0^{-4}$ | $\text{lx} \cdot \text{s}$ |
luminous efficacy | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ | $\mathbb{1}$ | $\text{lm} \cdot \text{W}^{-1}$ |