Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.06387085352(49)
\times 10^{23}$
$\left[\text{T}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
angular time |
$1.06387085352(49)
\times 10^{23}$
$\left[\text{T}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
length |
$3.5486911866(16)
\times 10^{14}$
$\left[\text{T}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
angular length |
$3.5486911866(16)
\times 10^{14}$
$\left[\text{T}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2$ |
area |
$1.2593209138(12)
\times 10^{29}$
$\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
angular area |
$1.2593209138(12)
\times 10^{29}$
$\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
volume |
$4.4689410280(62)
\times 10^{43}$
$\left[\text{T}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
wavenumber |
$2.8179403262(13)
\times 10^{-15}$
$\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
angular wavenumber |
$2.8179403262(13)
\times 10^{-15}$
$\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
fuel efficiency |
$7.9407876820(73)
\times 10^{-30}$
$\left[\text{T}^{-2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
number density |
$2.2376665831(31)
\times 10^{-44}$
$\left[\text{T}^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$ |
frequency |
$9.3996371523(43)
\times 10^{-24}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
angular frequency |
$9.3996371523(43)
\times 10^{-24}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
frequency drift |
$8.8353178594(81)
\times 10^{-47}$
$\left[\text{T}^{-2}\right]/\left[\text{Hz} \cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
stagnance |
$2.99792458 \times
10^{8}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}$ |
speed |
$3.3356409519815204
\times 10^{-9}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}$ |
acceleration |
$3.1353814619(14)
\times 10^{-32}$
$\left[\text{T}^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
jerk |
$2.9471448076(27)
\times 10^{-55}$
$\left[\text{T}^{-2}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$ |
snap |
$2.7702091826(38)
\times 10^{-78}$
$\left[\text{T}^{-3}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$ |
crackle |
$2.6038961153(48)
\times 10^{-101}$
$\left[\text{T}^{-4}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{12}\tau^{-4}2^{-4}$ |
pop |
$2.4475678666(56)
\times 10^{-124}$
$\left[\text{T}^{-5}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{15}\tau^{-5}2^{-5}$ |
volume flow |
$4.2006424118(39)
\times 10^{20}$
$\left[\text{T}^{2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
etendue |
$1.2593209138(12)
\times 10^{29}$
$\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$ |
photon intensity |
$9.3996371523(43)
\times 10^{-24}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
photon irradiance |
$8.4479725689(39)
\times 10^{-7}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
photon radiance |
$8.4479725689(39)
\times 10^{-7}$
$\left[\text{T}^{-1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
inertia |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass flow |
$1.03186312710(79)
\times 10^{7}$
$\left[\text{T}^{-1}\right]/\left[\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
linear density |
$3.0934478319(24)
\times 10^{15}$
$\left[\text{T}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
area density |
$8.717151393(11)$
$\left[\text{T}^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
density |
$2.4564412439(41)
\times 10^{-14}$
$\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
specific weight |
$7.701880338(17)
\times 10^{-46}$
$\left[\text{T}^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$ |
specific volume |
$4.0709298563(69)
\times 10^{13}$
$\left[\text{T}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
force |
$0.034419249036(26)$
$\left[\text{T}^{-1}\right]/\left[\text{N}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
specific force |
$3.1353814619(14)
\times 10^{-32}$
$\left[\text{T}^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$2.7331594877(46)
\times 10^{-31}$
$\left[\text{T}^{-3}\right]/\left[\text{Pa}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
compressibility |
$3.6587692907(62)
\times 10^{30}$
$\left[\text{T}^{3}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
viscosity |
$2.9077287170(36)
\times 10^{-8}$
$\left[\text{T}^{-2}\right]/\left[\text{Pa} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
diffusivity |
$1.18371596481(54)
\times 10^{6}$
$\left[\text{T}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2$ |
rotational inertia |
$1.38244359340(85)
\times 10^{59}$
$\left[\text{T}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-4}\tau^{2}2$ |
impulse |
$3.6617635850(11)
\times 10^{21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
momentum |
$3.6617635850(11)
\times 10^{21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
angular momentum |
$1.29944681615(20)
\times 10^{36}$
$\left[\text{T}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\alpha^{-1}\tau$ |
yank |
$3.2352845199(40)
\times 10^{-25}$
$\left[\text{T}^{-2}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
energy |
$1.22143285705(37)
\times 10^{13}$
$\left[\mathbb{1}\right]/\left[\text{J}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
specific energy |
$1.1126500560536183
\times 10^{-17}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{kg}^{-1}\right]$ |
$\text{c}^{-2}$ |
action |
$1.29944681615(20)
\times 10^{36}$
$\left[\text{T}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\alpha^{-1}\tau$ |
fluence |
$9.699138986(12)
\times 10^{-17}$
$\left[\text{T}^{-2}\right]/\left[\text{N} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
power |
$1.14810256621(88)
\times 10^{-10}$
$\left[\text{T}^{-1}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
power density |
$2.5690707463(55)
\times 10^{-54}$
$\left[\text{T}^{-4}\right]/\left[\text{W} \cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$ |
irradiance |
$9.116838715(15)
\times 10^{-40}$
$\left[\text{T}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
radiance |
$9.116838715(15)
\times 10^{-40}$
$\left[\text{T}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
radiant intensity |
$1.14810256621(88)
\times 10^{-10}$
$\left[\text{T}^{-1}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
spectral flux |
$3.2352845199(40)
\times 10^{-25}$
$\left[\text{T}^{-2}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$ |
spectral exposure |
$1.03186312710(79)
\times 10^{7}$
$\left[\text{T}^{-1}\right]/\left[\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$ |
sound exposure |
$7.947286330(23)
\times 10^{-39}$
$\left[\text{T}^{-5}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{19}\tau^{-5}2^{-7}$ |
impedance |
$6.506527383(17)
\times 10^{-52}$
$\left[\text{T}^{-5}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{17}\tau^{-5}2^{-6}$ |
specific impedance |
$8.193806009(14)
\times 10^{-23}$
$\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$ |
admittance |
$1.5369181457(40)
\times 10^{51}$
$\left[\text{T}^{5}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-17}\tau^{5}2^{6}$ |
compliance |
$1.0310193528(13)
\times 10^{16}$
$\left[\text{T}^{2}\right]/\left[\text{m} \cdot
\text{N}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$ |
inertance |
$6.922104840(15)
\times 10^{-29}$
$\left[\text{T}^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$ |
Name |
Quantity |
Product |
charge |
$6.24150907276(48)
\times 10^{18}$
$\left[\text{e}\right]/\left[\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\alpha^{-1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$ |
charge density |
$1.3966416280(18)
\times 10^{-25}$
$\left[\text{T}^{-3}\text{Q}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-3}\alpha^{17/2}\tau^{-5/2}2^{-13/2}5^{-7/2}$ |
linear charge
density |
$17588.2001124(67)$
$\left[\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$ |
exposure |
$5.6856301021(22)
\times 10^{-12}$
$\left[\text{e}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot
\alpha^{-5/2}\tau^{1/2}2^{-5/2}5^{-7/2}$ |
mobility |
$2.31647435896(18)$
$\left[\text{T}\cdot
\text{Q}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{-5/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$ |
current |
$5.8667920567(22)
\times 10^{-5}$
$\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$ |
current density |
$4.6586950096(61)
\times 10^{-34}$
$\left[\text{T}^{-3}\text{Q}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-3}\alpha^{17/2}\tau^{-5/2}2^{-13/2}5^{-7/2}$ |
resistance |
$0.0333564095198152$
$\left[\text{T}\cdot
\text{Q}^{-2}\right]/\left[\Omega\right]$ |
$\text{c}^{-1}2^{7}5^{7}$ |
conductance |
$29.979245799999998$
$\left[\text{T}^{-1}\text{Q}^{2}\right]/\left[\text{S}\right]$ |
$\text{c}\cdot
2^{-7}5^{-7}$ |
resistivity |
$1.18371596481(54)
\times 10^{13}$
$\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\Omega
\cdot \text{m}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2^{8}5^{7}$ |
conductivity |
$8.4479725689(39)
\times 10^{-14}$
$\left[\text{T}^{-2}\text{Q}^{2}\right]/\left[\text{S}
\cdot \text{m}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-8}5^{-7}$ |
capacitance |
$3.1894045817(15)
\times 10^{24}$
$\left[\text{e}^2\right]/\left[\text{F}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau\cdot 2^{-6}5^{-7}$ |
inductance |
$3.5486911866(16)
\times 10^{21}$
$\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2^{8}5^{7}$ |
reluctance |
$2.8179403262(13)
\times 10^{-22}$
$\left[\text{T}^{-2}\text{Q}^{2}\right]/\left[\text{H}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-8}5^{-7}$ |
permeance |
$3.5486911866(16)
\times 10^{21}$
$\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot
2^{8}5^{7}$ |
permittivity |
$8.987551787368176
\times 10^{9}$
$\left[\text{T}^{-1}\text{Q}^{2}\right]/\left[\text{F}
\cdot \text{m}^{-1}\right]$ |
$\text{c}^{2}2^{-7}5^{-7}$ |
permeability |
$1.0 \times
10^{7}$ $\left[\text{T}\cdot
\text{Q}^{-2}\right]/\left[\text{H} \cdot
\text{m}^{-1}\right]$ |
$2^{7}5^{7}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$4.0709298563(69)
\times 10^{13}$
$\left[\text{T}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$586.67920567(22)$
$\left[\text{e}^{-1}\right]/\left[\text{Wb} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{5/2}5^{7/2}$ |
electric potential |
$1.95695118409(75)
\times 10^{-6}$
$\left[\text{e}^{-1}\right]/\left[\text{V}\right]$ |
$\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{5/2}5^{7/2}$ |
magnetic potential |
$5.8667920567(22)
\times 10^{-5}$
$\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$ |
electric field |
$5.5145716580(46)
\times 10^{-21}$
$\left[\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{V}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{3/2}5^{7/2}$ |
magnetic field |
$1.6532269922(14)
\times 10^{-19}$
$\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$ |
electric flux |
$6.94461541966(53)
\times 10^{8}$ $\left[\text{T}\cdot
\text{Q}^{-1}\right]/\left[\text{V} \cdot
\text{m}\right]$ |
$\hbar^{-1/2}\text{c}^{-3/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$ |
magnetic flux |
$2.08194332653(16)
\times 10^{17}$ $\left[\text{T}\cdot
\text{Q}^{-1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$ |
electric
displacement |
$4.9562498362(42)
\times 10^{-11}$
$\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$ |
magnetic flux
density |
$1.6532269922(14)
\times 10^{-12}$
$\left[\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{T}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{3/2}5^{7/2}$ |
electric dipole
moment |
$2.2149188238(12)
\times 10^{33}$ $\left[\text{T}\cdot
\text{Q}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot
\alpha^{-7/2}\tau^{3/2}2^{-5/2}5^{-7/2}$ |
magnetic dipole
moment |
$7.3881739339(40)
\times 10^{24}$ $\left[\text{T}\cdot
\text{Q}\right]/\left[\text{J} \cdot
\text{T}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot
\alpha^{-7/2}\tau^{3/2}2^{-5/2}5^{-7/2}$ |
electric
polarizability |
$4.0164838924(55)
\times 10^{53}$
$\left[\text{T}^{2}\text{Q}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{-4}5^{-7}$ |
magnetic
polarizability |
$4.4689410280(62)
\times 10^{43}$
$\left[\text{T}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$ |
magnetic moment |
$7.3881739339(40)
\times 10^{31}$
$\left[\text{T}^{2}\text{Q}^{-1}\right]/\left[\text{Wb}
\cdot \text{m}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot
\alpha^{-7/2}\tau^{3/2}2^{9/2}5^{7/2}$ |
specific
magnetization |
$0.014858463209(13)$
$\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{3/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$ |
pole strength |
$2.08194332653(16)
\times 10^{10}$
$\left[\text{e}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\hbar^{-1/2}\text{c}^{-1/2}\alpha^{-1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$ |
Name |
Quantity |
Product |
temperature |
$1.686370052070(49)
\times 10^{-10}$
$\left[\mathbb{1}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$ |
entropy |
$7.2429705185(22)
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-4}5^{-3}$ |
specific entropy |
$6.59789975924(19)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot
2^{-3}5^{-3}$ |
volume heat capacity |
$1.6207353091(27)
\times 10^{-21}$
$\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{11}\mu_\text{eu}\cdot
\tau^{-3}2^{-7}5^{-3}$ |
thermal conductivity |
$1.9184902602(24)
\times 10^{-15}$
$\left[\text{T}^{-2}\right]/\left[\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\mu_\text{eu}\cdot
\tau^{-2}2^{-6}5^{-3}$ |
thermal conductance |
$0.68081294779(52)$
$\left[\text{T}^{-1}\right]/\left[\text{W} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\mu_\text{eu}\cdot
\tau^{-1}2^{-5}5^{-3}$ |
thermal resistivity |
$5.2124319876(64)
\times 10^{14}$
$\left[\text{T}^{2}\right]/\left[\text{K} \cdot
\text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot
\text{R}_{\infty}^{3}\alpha^{-8}\mu_\text{eu}^{-1}\tau^{2}2^{6}5^{3}$ |
thermal resistance |
$1.4688322295(11)$
$\left[\text{T}\right]/\left[\text{K} \cdot
\text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-5}\mu_\text{eu}^{-1}\tau\cdot
2^{5}5^{3}$ |
thermal expansion |
$5.92989657740(17)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\mu_\text{eu}\cdot
2^{-3}5^{-3}$ |
lapse rate |
$4.7520901746(22)
\times 10^{-25}$
$\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-1}2^{2}5^{3}$ |
Name |
Quantity |
Product |
molar mass |
$1000.0$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$2^{3}5^{3}$ |
molality |
$0.001$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$2^{-3}5^{-3}$ |
molar amount |
$1.09776910575(34)
\times 10^{27}$
$\left[\mathbb{1}\right]/\left[\text{mol}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3}$ |
molarity |
$2.4564412439(41)
\times 10^{-17}$
$\left[\text{T}^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-7}5^{-3}$ |
molar volume |
$4.0709298563(69)
\times 10^{16}$
$\left[\text{T}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{7}5^{3}$ |
molar entropy |
$6.59789975924(19)
\times 10^{-5}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molar energy |
$1.1126500560536184
\times 10^{-14}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{mol}^{-1}\right]$ |
$\text{c}^{-2}2^{3}5^{3}$ |
molar conductivity |
$9.6912078136(74)
\times 10^{-12}$
$\left[\text{e}^2\right]/\left[\text{S} \cdot
\text{m}^2 \text{mol}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot
2^{-2}5^{-4}$ |
molar susceptibility |
$4.0709298563(69)
\times 10^{16}$
$\left[\text{T}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{7}5^{3}$ |
catalysis |
$10318.6312710(79)$
$\left[\text{T}^{-1}\right]/\left[\text{kat}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-5}5^{-3}$ |
specificity |
$3.8265263522(47)
\times 10^{-7}$
$\left[\text{T}^{2}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{6}5^{3}$ |
diffusion flux |
$9.2739232923(71)
\times 10^{20}$
$\left[\text{T}^{-1}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-5}5^{-3}$ |
|
Unified |
Metric |
Electronic |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{T}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{T}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{T}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{T}$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{T}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{T}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{T}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{T}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{T}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{T}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{T}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{T}^{-2}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\mathbb{1}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{T}^{-1}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{T}^{-2}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{T}^{-3}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{T}^{-4}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{T}^{-5}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{T}^{2}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{T}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{T}^{-1}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{T}^{-1}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{T}^{-1}$ |
|
Unified |
Metric |
Electronic |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{T}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{T}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{T}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{T}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{T}^{-4}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{T}^{3}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{T}^{-1}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{T}^{-1}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{T}^{-3}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{T}^{3}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{T}^{-2}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\text{T}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{T}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\mathbb{1}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\mathbb{1}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\text{T}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{T}^{-2}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\mathbb{1}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\mathbb{1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\text{T}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{T}^{-2}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{T}^{-1}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{T}^{-4}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{T}^{-3}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{T}^{-3}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{T}^{-1}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{T}^{-2}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{T}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{T}^{-5}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{T}^{-5}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{T}^{-3}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{T}^{5}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{T}^{2}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{T}^{-4}$ |
|
Unified |
Metric |
Electronic |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{e}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{T}^{-3}\text{Q}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{e}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{T}^{-3}\text{Q}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{T}\cdot
\text{Q}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{T}^{-1}\text{Q}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{T}^{-2}\text{Q}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{e}^2$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{T}^{-2}\text{Q}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{T}^{2}\text{Q}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{T}^{-1}\text{Q}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{T}\cdot
\text{Q}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{T}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{e}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{e}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{T}^{-1}\text{Q}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{T}^{-1}\text{Q}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{T}^{-2}\text{Q}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{T}\cdot
\text{Q}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{T}^{-2}\text{Q}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{T}^{-1}\text{Q}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{T}\cdot
\text{Q}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{T}\cdot
\text{Q}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{T}^{2}\text{Q}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{T}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{T}^{2}\text{Q}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{T}^{-2}\text{Q}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{e}$ |
|
Unified |
Metric |
Electronic |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\mathbb{1}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{T}^{-3}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{T}^{3}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\mathbb{1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{e}^2$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{T}^{3}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{T}^{-1}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{T}^{2}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\text{T}^{-1}$ |