Metric -> Electronic

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.06387085352(49) \times 10^{23}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
angular time $1.06387085352(49) \times 10^{23}$ $\left[\text{T}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
length $3.5486911866(16) \times 10^{14}$ $\left[\text{T}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
angular length $3.5486911866(16) \times 10^{14}$ $\left[\text{T}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
area $1.2593209138(12) \times 10^{29}$ $\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
angular area $1.2593209138(12) \times 10^{29}$ $\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
volume $4.4689410280(62) \times 10^{43}$ $\left[\text{T}^{3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
wavenumber $2.8179403262(13) \times 10^{-15}$ $\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
angular wavenumber $2.8179403262(13) \times 10^{-15}$ $\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
fuel efficiency $7.9407876820(73) \times 10^{-30}$ $\left[\text{T}^{-2}\right]/\left[\text{m}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
number density $2.2376665831(31) \times 10^{-44}$ $\left[\text{T}^{-3}\right]/\left[\text{m}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$
frequency $9.3996371523(43) \times 10^{-24}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
angular frequency $9.3996371523(43) \times 10^{-24}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
frequency drift $8.8353178594(81) \times 10^{-47}$ $\left[\text{T}^{-2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
stagnance $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}$
speed $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}$
acceleration $3.1353814619(14) \times 10^{-32}$ $\left[\text{T}^{-1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
jerk $2.9471448076(27) \times 10^{-55}$ $\left[\text{T}^{-2}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{6}\tau^{-2}2^{-2}$
snap $2.7702091826(38) \times 10^{-78}$ $\left[\text{T}^{-3}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{9}\tau^{-3}2^{-3}$
crackle $2.6038961153(48) \times 10^{-101}$ $\left[\text{T}^{-4}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{12}\tau^{-4}2^{-4}$
pop $2.4475678666(56) \times 10^{-124}$ $\left[\text{T}^{-5}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{15}\tau^{-5}2^{-5}$
volume flow $4.2006424118(39) \times 10^{20}$ $\left[\text{T}^{2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
etendue $1.2593209138(12) \times 10^{29}$ $\left[\text{T}^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-6}\tau^{2}2^{2}$
photon intensity $9.3996371523(43) \times 10^{-24}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
photon irradiance $8.4479725689(39) \times 10^{-7}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
photon radiance $8.4479725689(39) \times 10^{-7}$ $\left[\text{T}^{-1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass flow $1.03186312710(79) \times 10^{7}$ $\left[\text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
linear density $3.0934478319(24) \times 10^{15}$ $\left[\text{T}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
area density $8.717151393(11)$ $\left[\text{T}^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
density $2.4564412439(41) \times 10^{-14}$ $\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
specific weight $7.701880338(17) \times 10^{-46}$ $\left[\text{T}^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$
specific volume $4.0709298563(69) \times 10^{13}$ $\left[\text{T}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
force $0.034419249036(26)$ $\left[\text{T}^{-1}\right]/\left[\text{N}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
specific force $3.1353814619(14) \times 10^{-32}$ $\left[\text{T}^{-1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $2.7331594877(46) \times 10^{-31}$ $\left[\text{T}^{-3}\right]/\left[\text{Pa}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
compressibility $3.6587692907(62) \times 10^{30}$ $\left[\text{T}^{3}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
viscosity $2.9077287170(36) \times 10^{-8}$ $\left[\text{T}^{-2}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
diffusivity $1.18371596481(54) \times 10^{6}$ $\left[\text{T}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2$
rotational inertia $1.38244359340(85) \times 10^{59}$ $\left[\text{T}^{2}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-4}\tau^{2}2$
impulse $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
momentum $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
angular momentum $1.29944681615(20) \times 10^{36}$ $\left[\text{T}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\alpha^{-1}\tau$
yank $3.2352845199(40) \times 10^{-25}$ $\left[\text{T}^{-2}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
energy $1.22143285705(37) \times 10^{13}$ $\left[\mathbb{1}\right]/\left[\text{J}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
specific energy $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}$
action $1.29944681615(20) \times 10^{36}$ $\left[\text{T}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\alpha^{-1}\tau$
fluence $9.699138986(12) \times 10^{-17}$ $\left[\text{T}^{-2}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
power $1.14810256621(88) \times 10^{-10}$ $\left[\text{T}^{-1}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
power density $2.5690707463(55) \times 10^{-54}$ $\left[\text{T}^{-4}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$
irradiance $9.116838715(15) \times 10^{-40}$ $\left[\text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
radiance $9.116838715(15) \times 10^{-40}$ $\left[\text{T}^{-3}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
radiant intensity $1.14810256621(88) \times 10^{-10}$ $\left[\text{T}^{-1}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
spectral flux $3.2352845199(40) \times 10^{-25}$ $\left[\text{T}^{-2}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
spectral exposure $1.03186312710(79) \times 10^{7}$ $\left[\text{T}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
sound exposure $7.947286330(23) \times 10^{-39}$ $\left[\text{T}^{-5}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{19}\tau^{-5}2^{-7}$
impedance $6.506527383(17) \times 10^{-52}$ $\left[\text{T}^{-5}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{17}\tau^{-5}2^{-6}$
specific impedance $8.193806009(14) \times 10^{-23}$ $\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
admittance $1.5369181457(40) \times 10^{51}$ $\left[\text{T}^{5}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-17}\tau^{5}2^{6}$
compliance $1.0310193528(13) \times 10^{16}$ $\left[\text{T}^{2}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{3}$
inertance $6.922104840(15) \times 10^{-29}$ $\left[\text{T}^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{14}\tau^{-4}2^{-5}$

Electromagnetic Ratios

Name Quantity Product
charge $6.24150907276(48) \times 10^{18}$ $\left[\text{e}\right]/\left[\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\alpha^{-1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$
charge density $1.3966416280(18) \times 10^{-25}$ $\left[\text{T}^{-3}\text{Q}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-3}\alpha^{17/2}\tau^{-5/2}2^{-13/2}5^{-7/2}$
linear charge density $17588.2001124(67)$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
exposure $5.6856301021(22) \times 10^{-12}$ $\left[\text{e}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-5/2}\tau^{1/2}2^{-5/2}5^{-7/2}$
mobility $2.31647435896(18)$ $\left[\text{T}\cdot \text{Q}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-5/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$
current $5.8667920567(22) \times 10^{-5}$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
current density $4.6586950096(61) \times 10^{-34}$ $\left[\text{T}^{-3}\text{Q}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-3}\alpha^{17/2}\tau^{-5/2}2^{-13/2}5^{-7/2}$
resistance $0.0333564095198152$ $\left[\text{T}\cdot \text{Q}^{-2}\right]/\left[\Omega\right]$ $\text{c}^{-1}2^{7}5^{7}$
conductance $29.979245799999998$ $\left[\text{T}^{-1}\text{Q}^{2}\right]/\left[\text{S}\right]$ $\text{c}\cdot 2^{-7}5^{-7}$
resistivity $1.18371596481(54) \times 10^{13}$ $\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{8}5^{7}$
conductivity $8.4479725689(39) \times 10^{-14}$ $\left[\text{T}^{-2}\text{Q}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-8}5^{-7}$
capacitance $3.1894045817(15) \times 10^{24}$ $\left[\text{e}^2\right]/\left[\text{F}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{-6}5^{-7}$
inductance $3.5486911866(16) \times 10^{21}$ $\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{8}5^{7}$
reluctance $2.8179403262(13) \times 10^{-22}$ $\left[\text{T}^{-2}\text{Q}^{2}\right]/\left[\text{H}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}2^{-8}5^{-7}$
permeance $3.5486911866(16) \times 10^{21}$ $\left[\text{T}^{2}\text{Q}^{-2}\right]/\left[\text{H}\right]$ $\text{R}_{\infty}\cdot \alpha^{-3}\tau\cdot 2^{8}5^{7}$
permittivity $8.987551787368176 \times 10^{9}$ $\left[\text{T}^{-1}\text{Q}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\text{c}^{2}2^{-7}5^{-7}$
permeability $1.0 \times 10^{7}$ $\left[\text{T}\cdot \text{Q}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $2^{7}5^{7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $4.0709298563(69) \times 10^{13}$ $\left[\text{T}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $586.67920567(22)$ $\left[\text{e}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{5/2}5^{7/2}$
electric potential $1.95695118409(75) \times 10^{-6}$ $\left[\text{e}^{-1}\right]/\left[\text{V}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{5/2}5^{7/2}$
magnetic potential $5.8667920567(22) \times 10^{-5}$ $\left[\text{T}^{-1}\text{Q}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
electric field $5.5145716580(46) \times 10^{-21}$ $\left[\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{3/2}5^{7/2}$
magnetic field $1.6532269922(14) \times 10^{-19}$ $\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$
electric flux $6.94461541966(53) \times 10^{8}$ $\left[\text{T}\cdot \text{Q}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$
magnetic flux $2.08194332653(16) \times 10^{17}$ $\left[\text{T}\cdot \text{Q}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\alpha^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$
electric displacement $4.9562498362(42) \times 10^{-11}$ $\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$
magnetic flux density $1.6532269922(14) \times 10^{-12}$ $\left[\text{T}^{-1}\text{Q}^{-1}\right]/\left[\text{T}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{3/2}5^{7/2}$
electric dipole moment $2.2149188238(12) \times 10^{33}$ $\left[\text{T}\cdot \text{Q}\right]/\left[\text{m}\cdot \text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-7/2}\tau^{3/2}2^{-5/2}5^{-7/2}$
magnetic dipole moment $7.3881739339(40) \times 10^{24}$ $\left[\text{T}\cdot \text{Q}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-7/2}\tau^{3/2}2^{-5/2}5^{-7/2}$
electric polarizability $4.0164838924(55) \times 10^{53}$ $\left[\text{T}^{2}\text{Q}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{-4}5^{-7}$
magnetic polarizability $4.4689410280(62) \times 10^{43}$ $\left[\text{T}^{3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-9}\tau^{3}2^{3}$
magnetic moment $7.3881739339(40) \times 10^{31}$ $\left[\text{T}^{2}\text{Q}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-7/2}\tau^{3/2}2^{9/2}5^{7/2}$
specific magnetization $0.014858463209(13)$ $\left[\text{T}^{-2}\text{Q}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\hbar^{-1/2}\text{c}^{3/2}\text{R}_{\infty}^{-2}\alpha^{11/2}\tau^{-3/2}2^{-11/2}5^{-7/2}$
pole strength $2.08194332653(16) \times 10^{10}$ $\left[\text{e}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\alpha^{-1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$
entropy $7.2429705185(22) \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-4}5^{-3}$
specific entropy $6.59789975924(19) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot 2^{-3}5^{-3}$
volume heat capacity $1.6207353091(27) \times 10^{-21}$ $\left[\text{T}^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{11}\mu_\text{eu}\cdot \tau^{-3}2^{-7}5^{-3}$
thermal conductivity $1.9184902602(24) \times 10^{-15}$ $\left[\text{T}^{-2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\mu_\text{eu}\cdot \tau^{-2}2^{-6}5^{-3}$
thermal conductance $0.68081294779(52)$ $\left[\text{T}^{-1}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\mu_\text{eu}\cdot \tau^{-1}2^{-5}5^{-3}$
thermal resistivity $5.2124319876(64) \times 10^{14}$ $\left[\text{T}^{2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{3}\alpha^{-8}\mu_\text{eu}^{-1}\tau^{2}2^{6}5^{3}$
thermal resistance $1.4688322295(11)$ $\left[\text{T}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{2}\alpha^{-5}\mu_\text{eu}^{-1}\tau\cdot 2^{5}5^{3}$
thermal expansion $5.92989657740(17) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\mu_\text{eu}\cdot 2^{-3}5^{-3}$
lapse rate $4.7520901746(22) \times 10^{-25}$ $\left[\text{T}^{-1}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-1}2^{2}5^{3}$

Molar Ratios

Name Quantity Product
molar mass $1000.0$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $2^{3}5^{3}$
molality $0.001$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $2^{-3}5^{-3}$
molar amount $1.09776910575(34) \times 10^{27}$ $\left[\mathbb{1}\right]/\left[\text{mol}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3}$
molarity $2.4564412439(41) \times 10^{-17}$ $\left[\text{T}^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-7}5^{-3}$
molar volume $4.0709298563(69) \times 10^{16}$ $\left[\text{T}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{7}5^{3}$
molar entropy $6.59789975924(19) \times 10^{-5}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$
molar energy $1.1126500560536184 \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{c}^{-2}2^{3}5^{3}$
molar conductivity $9.6912078136(74) \times 10^{-12}$ $\left[\text{e}^2\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-5}\tau\cdot 2^{-2}5^{-4}$
molar susceptibility $4.0709298563(69) \times 10^{16}$ $\left[\text{T}^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-11}\tau^{3}2^{7}5^{3}$
catalysis $10318.6312710(79)$ $\left[\text{T}^{-1}\right]/\left[\text{kat}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-5}5^{-3}$
specificity $3.8265263522(47) \times 10^{-7}$ $\left[\text{T}^{2}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{3}\alpha^{-8}\tau^{2}2^{6}5^{3}$
diffusion flux $9.2739232923(71) \times 10^{20}$ $\left[\text{T}^{-1}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-5}5^{-3}$

Photometric Ratios

Name Quantity Product
luminous flux $1.6809216233(13) \times 10^{-13}$ $\left[\text{T}^{-1}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
luminous intensity $1.6809216233(13) \times 10^{-13}$ $\left[\text{T}^{-1}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{5}\tau^{-1}2^{-2}$
luminance $1.3347841721(23) \times 10^{-42}$ $\left[\text{T}^{-3}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
illuminance $1.3347841721(23) \times 10^{-42}$ $\left[\text{T}^{-3}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{11}\tau^{-3}2^{-4}$
luminous energy $1.78828352208(55) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
luminous exposure $1.4200379764(17) \times 10^{-19}$ $\left[\text{T}^{-2}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{8}\tau^{-2}2^{-3}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified Metric Electronic
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{T}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{T}$
length $\text{L}$ $\text{m}$ $\text{T}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{T}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{T}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{T}^{2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{T}^{3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{T}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{T}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{T}^{-2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{T}^{-3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{T}^{-1}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{T}^{-1}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{T}^{-2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\mathbb{1}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\mathbb{1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{T}^{-1}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{T}^{-2}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{T}^{-3}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{T}^{-4}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{T}^{-5}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{T}^{2}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{T}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{T}^{-1}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{T}^{-1}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{T}^{-1}$

Mechanical

Unified Metric Electronic
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\mathbb{1}$
mass $\text{M}$ $\text{kg}$ $\mathbb{1}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{T}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{T}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{T}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{T}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{T}^{-4}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{T}^{3}$
force $\text{F}$ $\text{N}$ $\text{T}^{-1}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{T}^{-1}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{T}^{-3}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{T}^{3}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{T}^{-2}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{T}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{T}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\mathbb{1}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\mathbb{1}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\text{T}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{T}^{-2}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\mathbb{1}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\mathbb{1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\text{T}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{T}^{-2}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{T}^{-1}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{T}^{-4}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{T}^{-3}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{T}^{-3}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{T}^{-1}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{T}^{-2}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{T}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{T}^{-5}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{T}^{-5}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{T}^{-3}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{T}^{5}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{T}^{2}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{T}^{-4}$

Electromagnetic

Unified Metric Electronic
charge $\text{Q}$ $\text{C}$ $\text{e}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{T}^{-3}\text{Q}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{e}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{T}\cdot \text{Q}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{T}^{-3}\text{Q}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{T}\cdot \text{Q}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{T}^{-1}\text{Q}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{T}^{2}\text{Q}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{T}^{-2}\text{Q}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{e}^2$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{T}^{2}\text{Q}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{T}^{-2}\text{Q}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{T}^{2}\text{Q}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{T}^{-1}\text{Q}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{T}\cdot \text{Q}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{T}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{e}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{e}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{T}^{-1}\text{Q}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{T}^{-1}\text{Q}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{T}^{-2}\text{Q}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{T}\cdot \text{Q}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{T}\cdot \text{Q}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{T}^{-2}\text{Q}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{T}^{-1}\text{Q}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{T}\cdot \text{Q}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{T}\cdot \text{Q}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{T}^{2}\text{Q}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{T}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{T}^{2}\text{Q}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{T}^{-2}\text{Q}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{e}$

Thermodynamic

Unified Metric Electronic
temperature $\Theta$ $\text{K}$ $\mathbb{1}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\mathbb{1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{T}^{-3}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{T}^{-2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{T}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{T}^{2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{T}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\mathbb{1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{T}^{-1}$

Molar

Unified Metric Electronic
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\mathbb{1}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{T}^{-3}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{T}^{3}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\mathbb{1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\mathbb{1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{e}^2$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{T}^{3}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{T}^{-1}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{T}^{2}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{T}^{-1}$

Photometric

Unified Metric Electronic
luminous flux $\text{J}$ $\text{cd}$ $\text{T}^{-1}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{T}^{-1}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{T}^{-3}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{T}^{-3}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\mathbb{1}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{T}^{-2}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$