Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.1574074074074075
\times 10^{-5}$
$\left[\text{D}\right]/\left[\text{s}\right]$ |
$2^{-7}3^{-3}5^{-2}$ |
angular time |
$1.1574074074074075
\times 10^{-5}$
$\left[\text{D}\right]/\left[\text{s}\right]$ |
$2^{-7}3^{-3}5^{-2}$ |
length |
$6.68458712227(13)
\times 10^{-12}$
$\left[\text{au}\right]/\left[\text{m}\right]$ |
$\text{au}^{-1}$ |
angular length |
$6.68458712227(13)
\times 10^{-12}$
$\left[\text{au}\right]/\left[\text{m}\right]$ |
$\text{au}^{-1}$ |
area |
$4.46837049952(18)
\times 10^{-23}$
$\left[\text{au}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{au}^{-2}$ |
angular area |
$4.46837049952(18)
\times 10^{-23}$
$\left[\text{au}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{au}^{-2}$ |
volume |
$2.98692118986(18)
\times 10^{-34}$
$\left[\text{au}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{au}^{-3}$ |
wavenumber |
$1.495978707000(30)
\times 10^{11}$
$\left[\text{au}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{au}$ |
angular wavenumber |
$1.495978707000(30)
\times 10^{11}$
$\left[\text{au}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{au}$ |
fuel efficiency |
$2.237952291797(90)
\times 10^{22}$
$\left[\text{au}^{-2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{au}^{2}$ |
number density |
$3.34792897581(20)
\times 10^{33}$
$\left[\text{au}^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{au}^{3}$ |
frequency |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
angular frequency |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
frequency drift |
$7.46496 \times
10^{9}$
$\left[\text{D}^{-2}\right]/\left[\text{Hz} \cdot
\text{s}^{-1}\right]$ |
$2^{14}3^{6}5^{4}$ |
stagnance |
$1.731456836806(35)
\times 10^{6}$
$\left[\text{au}^{-1}\text{D}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{au}\cdot
2^{-7}3^{-3}5^{-2}$ |
speed |
$5.77548327364(12)
\times 10^{-7}$ $\left[\text{au}\cdot
\text{D}^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{au}^{-1}2^{7}3^{3}5^{2}$ |
acceleration |
$0.0499001754842(10)$
$\left[\text{au}\cdot
\text{D}^{-2}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{au}^{-1}2^{14}3^{6}5^{4}$ |
jerk |
$4311.375161839(86)$
$\left[\text{au}\cdot
\text{D}^{-3}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{au}^{-1}2^{21}3^{9}5^{6}$ |
snap |
$3.725028139829(75)
\times 10^{8}$ $\left[\text{au}\cdot
\text{D}^{-4}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{au}^{-1}2^{28}3^{12}5^{8}$ |
crackle |
$3.218424312812(65)
\times 10^{13}$ $\left[\text{au}\cdot
\text{D}^{-5}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{au}^{-1}2^{35}3^{15}5^{10}$ |
pop |
$2.780718606270(56)
\times 10^{18}$ $\left[\text{au}\cdot
\text{D}^{-6}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{au}^{-1}2^{42}3^{18}5^{12}$ |
volume flow |
$2.58069990804(16)
\times 10^{-29}$
$\left[\text{au}^{3}\text{D}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{au}^{-3}2^{7}3^{3}5^{2}$ |
etendue |
$4.46837049952(18)
\times 10^{-23}$
$\left[\text{au}^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{au}^{-2}$ |
photon intensity |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
photon irradiance |
$2.59022255995(10)
\times 10^{17}$
$\left[\text{au}^{-2}\text{D}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{au}^{2}2^{-7}3^{-3}5^{-2}$ |
photon radiance |
$2.59022255995(10)
\times 10^{17}$
$\left[\text{au}^{-2}\text{D}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{au}^{2}2^{-7}3^{-3}5^{-2}$ |
Name |
Quantity |
Product |
inertia |
$5.02915(11) \times
10^{-31}$
$\left[\text{M}_\odot\right]/\left[\text{kg}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
mass |
$5.02915(11) \times
10^{-31}$
$\left[\text{M}_\odot\right]/\left[\text{kg}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
mass flow |
$4.345182(96) \times
10^{-26}$ $\left[\text{M}_\odot\cdot
\text{D}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2}
\cdot \text{Hz}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
linear density |
$7.52350(17) \times
10^{-20}$ $\left[\text{M}_\odot\cdot
\text{au}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-2}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
area density |
$1.125499(25) \times
10^{-8}$ $\left[\text{M}_\odot\cdot
\text{au}^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-1}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
density |
$1683.722(37)$
$\left[\text{M}_\odot\cdot
\text{au}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
specific weight |
$84.0180(19)$
$\left[\text{M}_\odot\cdot
\text{au}^{-2}\text{D}^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-1}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
specific volume |
$0.000593922(13)$
$\left[\text{M}_\odot^{-1}\text{au}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ |
force |
$2.509553(55) \times
10^{-32}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot
\text{D}^{-2}\right]/\left[\text{N}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
specific force |
$0.0499001754842(10)$
$\left[\text{au}\cdot
\text{D}^{-2}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{au}^{-1}2^{14}3^{6}5^{4}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$5.61626(12) \times
10^{-10}$ $\left[\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-2}\right]/\left[\text{Pa}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-2}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
compressibility |
$1.780545(39) \times
10^{9}$
$\left[\text{M}_\odot^{-1}\text{au}\cdot
\text{D}^{2}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{2}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-42}3^{-20}5^{-14}$ |
viscosity |
$6.50030(14) \times
10^{-15}$ $\left[\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-1}\right]/\left[\text{Pa}
\cdot \text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-2}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
diffusivity |
$3.86067211159(15)
\times 10^{-18}$
$\left[\text{au}^{2}\text{D}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{au}^{-2}2^{7}3^{3}5^{2}$ |
rotational inertia |
$2.247209(50) \times
10^{-53}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
impulse |
$2.904575(64) \times
10^{-37}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-1}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
momentum |
$2.904575(64) \times
10^{-37}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-1}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
angular momentum |
$1.941588(43) \times
10^{-48}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
yank |
$2.168253(48) \times
10^{-27}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
energy |
$1.677532(37) \times
10^{-43}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
specific energy |
$3.33562070441(13)
\times 10^{-13}$
$\left[\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}
\cdot \text{kg}^{-1}\right]$ |
$\text{au}^{-2}2^{14}3^{6}5^{4}$ |
action |
$1.941588(43) \times
10^{-48}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
fluence |
$3.754237(83) \times
10^{-21}$ $\left[\text{M}_\odot\cdot
\text{D}^{-2}\right]/\left[\text{N} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
power |
$1.449388(32) \times
10^{-38}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}\right]/\left[\text{W}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
power density |
$4.85245(11) \times
10^{-5}$ $\left[\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-3}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-2}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
irradiance |
$3.243661(72) \times
10^{-16}$ $\left[\text{M}_\odot\cdot
\text{D}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
radiance |
$3.243661(72) \times
10^{-16}$ $\left[\text{M}_\odot\cdot
\text{D}^{-3}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
radiant intensity |
$1.449388(32) \times
10^{-38}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}\right]/\left[\text{W}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
spectral flux |
$2.168253(48) \times
10^{-27}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
spectral exposure |
$4.345182(96) \times
10^{-26}$ $\left[\text{M}_\odot\cdot
\text{D}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2}
\cdot \text{Hz}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
sound exposure |
$3.65074(16) \times
10^{-24}$
$\left[\text{M}_\odot^{2}\text{au}^{-2}\text{D}^{-3}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{2}\text{c}^{2}\text{au}^{-4}\text{k}_\text{G}^{-4}\text{m}_\text{P}^{-4}\tau^{-6}2^{77}3^{37}5^{26}$ |
impedance |
$2.176254(48) \times
10^{19}$ $\left[\text{M}_\odot\cdot
\text{au}^{-4}\text{D}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{au}\cdot
\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
specific impedance |
$0.000972431(21)$
$\left[\text{M}_\odot\cdot
\text{au}^{-2}\text{D}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-1}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
admittance |
$4.59505(10) \times
10^{-20}$
$\left[\text{M}_\odot^{-1}\text{au}^{4}\text{D}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-35}3^{-17}5^{-12}$ |
compliance |
$2.663657(59) \times
10^{20}$
$\left[\text{M}_\odot^{-1}\text{D}^{2}\right]/\left[\text{m}
\cdot \text{N}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-42}3^{-20}5^{-14}$ |
inertance |
$2.518813(56) \times
10^{14}$ $\left[\text{M}_\odot\cdot
\text{au}^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{au}\cdot
\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
Name |
Quantity |
Product |
charge |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
charge density |
$3.34792897581(20)
\times 10^{33}$
$\left[\text{au}^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{au}^{3}$ |
linear charge
density |
$1.495978707000(30)
\times 10^{11}$
$\left[\text{au}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{au}$ |
exposure |
$1.988409(44) \times
10^{30}$
$\left[\text{M}_\odot^{-1}\right]/\left[\text{kg}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ |
mobility |
$6.47640(14) \times
10^{-61}$ $\left[\text{M}_\odot\cdot
\text{au}^{4}\text{D}^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{4}\text{s}^{-3}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-7}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
current |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
current density |
$1.933590780113(78)
\times 10^{27}$
$\left[\text{au}^{-2}\text{D}^{-1}\right]/\left[\text{m}^{-2}\text{s}^{-1}\right]$ |
$\text{au}^{2}2^{7}3^{3}5^{2}$ |
resistance |
$1.941588(43) \times
10^{-48}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
conductance |
$5.15042(11) \times
10^{47}$
$\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}\right]/\left[\text{kg}^{-1}\text{m}^{-2}\text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-35}3^{-17}5^{-12}$ |
resistivity |
$1.297872(29) \times
10^{-59}$ $\left[\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{3}\text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-6}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
conductivity |
$7.70492(17) \times
10^{58}$
$\left[\text{M}_\odot^{-1}\text{au}^{-3}\text{D}\right]/\left[\text{kg}^{-1}\text{m}^{-3}\text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{6}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-35}3^{-17}5^{-12}$ |
capacitance |
$5.96114(13) \times
10^{42}$
$\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}^{2}\right]/\left[\text{J}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-42}3^{-20}5^{-14}$ |
inductance |
$2.247209(50) \times
10^{-53}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
reluctance |
$4.449965(98) \times
10^{52}$
$\left[\text{M}_\odot^{-1}\text{au}^{-2}\right]/\left[\text{kg}^{-1}\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ |
permeance |
$2.247209(50) \times
10^{-53}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
permittivity |
$8.91773(20) \times
10^{53}$
$\left[\text{M}_\odot^{-1}\text{au}^{-3}\text{D}^{2}\right]/\left[\text{kg}^{-1}\text{m}^{-3}\text{s}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{6}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-42}3^{-20}5^{-14}$ |
permeability |
$3.361776(74) \times
10^{-42}$ $\left[\text{M}_\odot\cdot
\text{au}\right]/\left[\text{kg}\cdot
\text{m}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$0.000593922(13)$
$\left[\text{M}_\odot^{-1}\text{au}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$2.904575(64) \times
10^{-37}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-1}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
electric potential |
$1.677532(37) \times
10^{-43}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
magnetic potential |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
electric field |
$2.509553(55) \times
10^{-32}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot
\text{D}^{-2}\right]/\left[\text{N}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
magnetic field |
$1.292525602848(26)
\times 10^{16}$
$\left[\text{au}^{-1}\text{D}^{-1}\right]/\left[\text{m}^{-1}\text{s}^{-1}\right]$ |
$\text{au}\cdot
2^{7}3^{3}5^{2}$ |
electric flux |
$1.121361(25) \times
10^{-54}$ $\left[\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-2}\right]/\left[\text{J} \cdot
\text{m}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-6}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
magnetic flux |
$1.941588(43) \times
10^{-48}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
electric
displacement |
$2.237952291797(90)
\times 10^{22}$
$\left[\text{au}^{-2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{au}^{2}$ |
magnetic flux
density |
$4.345182(96) \times
10^{-26}$ $\left[\text{M}_\odot\cdot
\text{D}^{-1}\right]/\left[\text{J} \cdot \text{m}^{-2}
\cdot \text{Hz}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
electric dipole
moment |
$6.68458712227(13)
\times 10^{-12}$
$\left[\text{au}\right]/\left[\text{m}\right]$ |
$\text{au}^{-1}$ |
magnetic dipole
moment |
$3.86067211159(15)
\times 10^{-18}$
$\left[\text{au}^{2}\text{D}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{au}^{-2}2^{7}3^{3}5^{2}$ |
electric
polarizability |
$2.663657(59) \times
10^{20}$
$\left[\text{M}_\odot^{-1}\text{D}^{2}\right]/\left[\text{m}
\cdot \text{N}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-42}3^{-20}5^{-14}$ |
magnetic
polarizability |
$2.98692118986(18)
\times 10^{-34}$
$\left[\text{au}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{au}^{-3}$ |
magnetic moment |
$1.297872(29) \times
10^{-59}$ $\left[\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{3}\text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-6}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{35}3^{17}5^{12}$ |
specific
magnetization |
$3.87491779608(23)
\times 10^{28}$
$\left[\text{au}^{-3}\text{D}\right]/\left[\text{m}^{-3}\text{s}\right]$ |
$\text{au}^{3}2^{-7}3^{-3}5^{-2}$ |
pole strength |
$5.77548327364(12)
\times 10^{-7}$ $\left[\text{au}\cdot
\text{D}^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{au}^{-1}2^{7}3^{3}5^{2}$ |
Name |
Quantity |
Product |
temperature |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
entropy |
$1.677532(37) \times
10^{-43}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
specific entropy |
$3.33562070441(13)
\times 10^{-13}$
$\left[\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}
\cdot \text{kg}^{-1}\right]$ |
$\text{au}^{-2}2^{14}3^{6}5^{4}$ |
volume heat capacity |
$5.61626(12) \times
10^{-10}$ $\left[\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-2}\right]/\left[\text{Pa}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-2}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
thermal conductivity |
$2.168253(48) \times
10^{-27}$ $\left[\text{M}_\odot\cdot
\text{au}\cdot \text{D}^{-3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-4}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
thermal conductance |
$1.449388(32) \times
10^{-38}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}\right]/\left[\text{W}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{49}3^{23}5^{16}$ |
thermal resistivity |
$4.61201(10) \times
10^{26}$
$\left[\text{M}_\odot^{-1}\text{au}^{-1}\text{D}^{3}\right]/\left[\text{kg}^{-1}\text{m}^{-1}\text{s}^{3}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{4}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-49}3^{-23}5^{-16}$ |
thermal resistance |
$6.89946(15) \times
10^{37}$
$\left[\text{M}_\odot^{-1}\text{au}^{-2}\text{D}^{3}\right]/\left[\text{W}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{5}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-49}3^{-23}5^{-16}$ |
thermal expansion |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
lapse rate |
$1.495978707000(30)
\times 10^{11}$
$\left[\text{au}^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{au}$ |
Name |
Quantity |
Product |
molar mass |
$5.02915(11) \times
10^{-31}$
$\left[\text{M}_\odot\right]/\left[\text{kg}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-3}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{28}3^{14}5^{10}$ |
molality |
$1.988409(44) \times
10^{30}$
$\left[\text{M}_\odot^{-1}\right]/\left[\text{kg}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-28}3^{-14}5^{-10}$ |
molar amount |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
molarity |
$3.34792897581(20)
\times 10^{33}$
$\left[\text{au}^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{au}^{3}$ |
molar volume |
$2.98692118986(18)
\times 10^{-34}$
$\left[\text{au}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{au}^{-3}$ |
molar entropy |
$1.677532(37) \times
10^{-43}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
molar energy |
$1.677532(37) \times
10^{-43}$ $\left[\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\right]/\left[\text{J}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{au}^{-5}\text{k}_\text{G}^{-2}\text{m}_\text{P}^{-2}\tau^{-3}2^{42}3^{20}5^{14}$ |
molar conductivity |
$3.442845(76) \times
10^{36}$
$\left[\text{M}_\odot^{-1}\text{au}^{-1}\text{D}\right]/\left[\text{kg}^{-1}\text{m}^{-1}\text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{au}^{4}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-35}3^{-17}5^{-12}$ |
molar susceptibility |
$2.98692118986(18)
\times 10^{-34}$
$\left[\text{au}^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{au}^{-3}$ |
catalysis |
$86400.0$
$\left[\text{D}^{-1}\right]/\left[\text{Hz}\right]$ |
$2^{7}3^{3}5^{2}$ |
specificity |
$2.58069990804(16)
\times 10^{-29}$
$\left[\text{au}^{3}\text{D}^{-1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{au}^{-3}2^{7}3^{3}5^{2}$ |
diffusion flux |
$2.59022255995(10)
\times 10^{17}$
$\left[\text{au}^{-2}\text{D}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\text{au}^{2}2^{-7}3^{-3}5^{-2}$ |
|
Unified |
Metric |
IAU☉ |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{D}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{D}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{au}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{au}$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{au}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{au}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{au}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{au}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{au}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{au}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{au}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{D}^{-1}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{D}^{-1}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{D}^{-2}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\text{au}^{-1}\text{D}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\text{au}\cdot
\text{D}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{au}\cdot
\text{D}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{au}\cdot
\text{D}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{au}\cdot
\text{D}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{au}\cdot
\text{D}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{au}\cdot
\text{D}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{au}^{3}\text{D}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{au}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{D}^{-1}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{au}^{-2}\text{D}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{au}^{-2}\text{D}$ |
|
Unified |
Metric |
IAU☉ |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\text{M}_\odot$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\text{M}_\odot$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{M}_\odot\cdot \text{D}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{M}_\odot\cdot \text{au}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{M}_\odot\cdot \text{au}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{M}_\odot\cdot \text{au}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{M}_\odot\cdot
\text{au}^{-2}\text{D}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{M}_\odot^{-1}\text{au}^{3}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-2}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{au}\cdot
\text{D}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-2}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}\cdot
\text{D}^{2}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-1}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\text{au}^{2}\text{D}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{M}_\odot\cdot \text{au}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-1}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-1}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-3}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\text{au}^{2}\text{D}^{-2}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot\cdot \text{D}^{-2}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{M}_\odot\cdot \text{D}^{-3}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{M}_\odot\cdot \text{D}^{-3}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-3}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{M}_\odot\cdot \text{D}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{M}_\odot^{2}\text{au}^{-2}\text{D}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{-4}\text{D}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{-2}\text{D}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{M}_\odot^{-1}\text{au}^{4}\text{D}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{M}_\odot^{-1}\text{D}^{2}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{M}_\odot\cdot \text{au}^{-4}$ |
|
Unified |
Metric |
IAU☉ |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{au}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{au}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{M}_\odot^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{4}\text{D}^{-3}\text{C}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{D}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{au}^{-2}\text{D}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\text{C}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{M}_\odot^{-1}\text{au}^{-2}\text{D}\cdot
\text{C}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-1}\text{C}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-3}\text{D}\cdot
\text{C}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{M}_\odot^{-1}\text{au}^{-2}\text{D}^{2}\text{C}^{2}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{C}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-2}\text{C}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{C}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-3}\text{D}^{2}\text{C}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{C}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{M}_\odot^{-1}\text{au}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-1}\text{C}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\text{C}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{D}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-2}\text{C}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{au}^{-1}\text{D}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-2}\text{C}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-1}\text{C}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{au}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{M}_\odot\cdot
\text{D}^{-1}\text{C}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{au}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{au}^{2}\text{D}^{-1}\text{C}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{M}_\odot^{-1}\text{D}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{au}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{M}_\odot\cdot
\text{au}^{3}\text{D}^{-1}\text{C}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{au}^{-3}\text{D}\cdot
\text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{au}\cdot
\text{D}^{-1}\text{C}$ |
|
Unified |
Metric |
IAU☉ |
temperature |
$\Theta$ |
$\text{K}$ |
$\text{K}$ |
entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\text{J} \cdot
\text{K}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\text{K}^{-1}$ |
specific entropy |
$\text{F}\cdot
\text{M}^{-1}\text{L}\cdot \Theta^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}$ |
$\text{au}^{2}\text{D}^{-2}\text{K}^{-1}$ |
volume heat capacity |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{-1}\text{D}^{-2}\text{K}^{-1}$ |
thermal conductivity |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}$ |
$\text{M}_\odot\cdot \text{au}\cdot
\text{D}^{-3}\text{K}^{-1}$ |
thermal conductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\text{W} \cdot
\text{K}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-3}\text{K}^{-1}$ |
thermal resistivity |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\text{K} \cdot
\text{m} \cdot \text{W}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-1}\text{D}^{3}\text{K}$ |
thermal resistance |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\text{K} \cdot
\text{W}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-2}\text{D}^{3}\text{K}$ |
thermal expansion |
$\Theta^{-1}$ |
$\text{K}^{-1}$ |
$\text{K}^{-1}$ |
lapse rate |
$\text{L}^{-1}\Theta$ |
$\text{m}^{-1}\text{K}$ |
$\text{au}^{-1}\text{K}$ |
|
Unified |
Metric |
IAU☉ |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\text{M}_\odot\cdot \text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\text{M}_\odot^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{au}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{au}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\text{K}^{-1}\text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\text{M}_\odot\cdot
\text{au}^{2}\text{D}^{-2}\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{M}_\odot^{-1}\text{au}^{-1}\text{D}\cdot
\text{C}^{2}\text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{au}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{D}^{-1}\text{mol}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{au}^{3}\text{D}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\text{au}^{-2}\text{D}\cdot
\text{mol}$ |