Metric -> NaturalGauss

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $7.7634407063(24) \times 10^{20}$ $\left[\mathbb{1}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
angular time $7.7634407063(24) \times 10^{20}$ $\left[\mathbb{1}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
length $2.58960507484(79) \times 10^{12}$ $\left[\mathbb{1}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
angular length $2.58960507484(79) \times 10^{12}$ $\left[\mathbb{1}\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
area $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
angular area $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
volume $1.7366032619(16) \times 10^{37}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$
wavenumber $3.8615926796(12) \times 10^{-13}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
angular wavenumber $3.8615926796(12) \times 10^{-13}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
fuel efficiency $1.49118980230(91) \times 10^{-25}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
number density $5.7583676244(53) \times 10^{-38}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$
frequency $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
angular frequency $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
frequency drift $1.6591724171(10) \times 10^{-42}$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
stagnance $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}$
speed $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}$
acceleration $4.2966013114(13) \times 10^{-30}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
jerk $5.5344034609(34) \times 10^{-51}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
snap $7.1288023832(66) \times 10^{-72}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$
crackle $9.182529568(11) \times 10^{-93}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-4}$
pop $1.1827912281(18) \times 10^{-113}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-5}2^{-5}$
volume flow $2.2368989828(14) \times 10^{16}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
etendue $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
photon intensity $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
photon irradiance $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
photon radiance $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass flow $1.41402394541(87) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
linear density $4.2391371426(26) \times 10^{17}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
area density $163698.20958(15)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
density $6.3213580777(77) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
specific weight $2.7160355406(42) \times 10^{-37}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$
specific volume $1.5819385450(19) \times 10^{7}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
force $4.7166761794(29)$ $\left[\mathbb{1}\right]/\left[\text{N}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
specific force $4.2966013114(13) \times 10^{-30}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $7.0334594194(86) \times 10^{-25}$ $\left[\mathbb{1}\right]/\left[\text{Pa}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
compressibility $1.4217754598(17) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
viscosity $0.00054603845163(50)$ $\left[\mathbb{1}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
diffusivity $8637.9927371(26)$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
rotational inertia $7.3616993897(23) \times 10^{54}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}2$
impulse $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
momentum $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $6.0754971382(56) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
energy $1.22143285705(37) \times 10^{13}$ $\left[\mathbb{1}\right]/\left[\text{J}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
specific energy $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $1.8213882206(17) \times 10^{-12}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
power $1.57331382212(96) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
power density $9.059719376(14) \times 10^{-46}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$
irradiance $2.3461095274(29) \times 10^{-33}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
radiance $2.3461095274(29) \times 10^{-33}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
radiant intensity $1.57331382212(96) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
spectral flux $6.0754971382(56) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
spectral exposure $1.41402394541(87) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
sound exposure $3.8405392910(82) \times 10^{-28}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\tau^{-5}2^{-7}$
impedance $3.1442901416(58) \times 10^{-41}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\tau^{-5}2^{-6}$
specific impedance $2.1085780876(26) \times 10^{-16}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
admittance $3.1803680798(58) \times 10^{40}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\tau^{5}2^{6}$
compliance $5.4903177075(50) \times 10^{11}$ $\left[\mathbb{1}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
inertance $2.4410510078(37) \times 10^{-20}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$

Electromagnetic Ratios

Name Quantity Product
charge $5.3317806099370496 \times 10^{17}$ $\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$
charge density $3.0702352845(28) \times 10^{-20}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-5/2}2^{-13/2}5^{-7/2}$
linear charge density $205891.649725(63)$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
exposure $4.8569235388(15) \times 10^{-13}$ $\left[\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{1/2}2^{-5/2}5^{-7/2}$
mobility $0.19788376379075065$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-5/2}\tau^{1/2}2^{7/2}5^{7/2}$
current $0.00068678061849(21)$ $\left[\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
current density $1.02412025472(94) \times 10^{-28}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-5/2}2^{-13/2}5^{-7/2}$
resistance $0.0333564095198152$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ $\text{c}^{-1}2^{7}5^{7}$
conductance $29.979245799999998$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ $\text{c}\cdot 2^{-7}5^{-7}$
resistivity $8.6379927371(26) \times 10^{10}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{8}5^{7}$
conductivity $1.15767636121(35) \times 10^{-11}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-8}5^{-7}$
capacitance $2.32742097189(71) \times 10^{22}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-6}5^{-7}$
inductance $2.58960507484(79) \times 10^{19}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{8}5^{7}$
reluctance $3.8615926796(12) \times 10^{-20}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-8}5^{-7}$
permeance $2.58960507484(79) \times 10^{19}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{8}5^{7}$
permittivity $8.987551787368176 \times 10^{9}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\text{c}^{2}2^{-7}5^{-7}$
permeability $1.0 \times 10^{7}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $2^{7}5^{7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $1.5819385450(19) \times 10^{7}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $6867.8061849(21)$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1/2}2^{5/2}5^{7/2}$
electric potential $2.29085355607(70) \times 10^{-5}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1/2}2^{5/2}5^{7/2}$
magnetic potential $0.00068678061849(21)$ $\left[\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1/2}2^{-9/2}5^{-7/2}$
electric field $8.8463433221(54) \times 10^{-18}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-3/2}2^{3/2}5^{7/2}$
magnetic field $2.6520670089(16) \times 10^{-16}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-3/2}2^{-11/2}5^{-7/2}$
electric flux $5.9324059945120536 \times 10^{7}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1/2}\text{c}^{-3/2}\tau^{1/2}2^{7/2}5^{7/2}$
magnetic flux $1.778490574948703 \times 10^{16}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\tau^{1/2}2^{7/2}5^{7/2}$
electric displacement $7.9506968736(49) \times 10^{-8}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-3/2}2^{-11/2}5^{-7/2}$
magnetic flux density $2.6520670089(16) \times 10^{-9}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-3/2}2^{3/2}5^{7/2}$
electric dipole moment $1.38072061254(42) \times 10^{30}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{C}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{3/2}2^{-5/2}5^{-7/2}$
magnetic dipole moment $4.6055882184(14) \times 10^{21}$ $\left[\text{e}_\text{n}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{3/2}2^{-5/2}5^{-7/2}$
electric polarizability $1.5607811751(14) \times 10^{47}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{-4}5^{-7}$
magnetic polarizability $1.7366032619(16) \times 10^{37}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$
magnetic moment $4.6055882184(14) \times 10^{28}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-2}\tau^{3/2}2^{9/2}5^{7/2}$
specific magnetization $23.835589586(15)$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\hbar^{-1/2}\text{c}^{3/2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-3/2}2^{-11/2}5^{-7/2}$
pole strength $1.7784905749487028 \times 10^{9}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\hbar^{-1/2}\text{c}^{-1/2}\tau^{1/2}2^{-7/2}5^{-7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $1.686370052070(49) \times 10^{-10}$ $\left[\mathbb{1}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}$
entropy $7.2429705185(22) \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-4}5^{-3}$
specific entropy $6.59789975924(19) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot 2^{-3}5^{-3}$
volume heat capacity $4.1707686939(51) \times 10^{-15}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}\cdot \tau^{-3}2^{-7}5^{-3}$
thermal conductivity $3.6027069686(33) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}\cdot \tau^{-2}2^{-6}5^{-3}$
thermal conductance $93.295882489(57)$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}\cdot \tau^{-1}2^{-5}5^{-3}$
thermal resistivity $2.7756906369(26) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-1}\tau^{2}2^{6}5^{3}$
thermal resistance $0.0107185866441(66)$ $\left[\mathbb{1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-1}\tau\cdot 2^{5}5^{3}$
thermal expansion $5.92989657740(17) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\mu_\text{eu}\cdot 2^{-3}5^{-3}$
lapse rate $6.5120742481(20) \times 10^{-23}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{2}5^{3}$

Molar Ratios

Name Quantity Product
molar mass $1000.0$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $2^{3}5^{3}$
molality $0.001$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $2^{-3}5^{-3}$
molar amount $1.09776910575(34) \times 10^{27}$ $\left[\mathbb{1}\right]/\left[\text{mol}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3}$
molarity $6.3213580777(77) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-7}5^{-3}$
molar volume $1.5819385450(19) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{7}5^{3}$
molar entropy $6.59789975924(19) \times 10^{-5}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$
molar energy $1.1126500560536184 \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{c}^{-2}2^{3}5^{3}$
molar conductivity $7.0720160238(43) \times 10^{-14}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{-2}5^{-4}$
molar susceptibility $1.5819385450(19) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{7}5^{3}$
catalysis $1.41402394541(87) \times 10^{6}$ $\left[\mathbb{1}\right]/\left[\text{kat}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-5}5^{-3}$
specificity $2.0376771136(19) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{6}5^{3}$
diffusion flux $1.27086134379(78) \times 10^{23}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-5}5^{-3}$

Photometric Ratios

Name Quantity Product
luminous flux $2.3034677403(14) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
luminous intensity $2.3034677403(14) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$
luminance $3.4349076043(42) \times 10^{-36}$ $\left[\mathbb{1}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
illuminance $3.4349076043(42) \times 10^{-36}$ $\left[\mathbb{1}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
luminous energy $1.78828352208(55) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
luminous exposure $2.6666701518(25) \times 10^{-15}$ $\left[\mathbb{1}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified Metric NaturalGauss
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\mathbb{1}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\mathbb{1}$
length $\text{L}$ $\text{m}$ $\mathbb{1}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\mathbb{1}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\mathbb{1}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\mathbb{1}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\mathbb{1}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\mathbb{1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\mathbb{1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\mathbb{1}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\mathbb{1}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\mathbb{1}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\mathbb{1}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\mathbb{1}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\mathbb{1}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\mathbb{1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\mathbb{1}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\mathbb{1}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\mathbb{1}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\mathbb{1}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\mathbb{1}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\mathbb{1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\mathbb{1}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\mathbb{1}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\mathbb{1}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\mathbb{1}$

Mechanical

Unified Metric NaturalGauss
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\mathbb{1}$
mass $\text{M}$ $\text{kg}$ $\mathbb{1}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\mathbb{1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\mathbb{1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\mathbb{1}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\mathbb{1}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\mathbb{1}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\mathbb{1}$
force $\text{F}$ $\text{N}$ $\mathbb{1}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\mathbb{1}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\mathbb{1}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\mathbb{1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\mathbb{1}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\mathbb{1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\mathbb{1}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\mathbb{1}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\mathbb{1}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\mathbb{1}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\mathbb{1}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\mathbb{1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\mathbb{1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\mathbb{1}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\mathbb{1}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\mathbb{1}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\mathbb{1}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\mathbb{1}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\mathbb{1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\mathbb{1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\mathbb{1}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\mathbb{1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\mathbb{1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\mathbb{1}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\mathbb{1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\mathbb{1}$

Electromagnetic

Unified Metric NaturalGauss
charge $\text{Q}$ $\text{C}$ $\text{e}_\text{n}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{e}_\text{n}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{e}_\text{n}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{e}_\text{n}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{e}_\text{n}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{e}_\text{n}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{e}_\text{n}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{e}_\text{n}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{e}_\text{n}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{e}_\text{n}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{e}_\text{n}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{e}_\text{n}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{e}_\text{n}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{e}_\text{n}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\mathbb{1}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{e}_\text{n}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{e}_\text{n}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{e}_\text{n}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{e}_\text{n}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{e}_\text{n}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{e}_\text{n}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{e}_\text{n}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{e}_\text{n}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{e}_\text{n}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{e}_\text{n}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\mathbb{1}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{e}_\text{n}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{e}_\text{n}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{e}_\text{n}$

Thermodynamic

Unified Metric NaturalGauss
temperature $\Theta$ $\text{K}$ $\mathbb{1}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\mathbb{1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\mathbb{1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\mathbb{1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\mathbb{1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\mathbb{1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\mathbb{1}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\mathbb{1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\mathbb{1}$

Molar

Unified Metric NaturalGauss
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\mathbb{1}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\mathbb{1}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\mathbb{1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\mathbb{1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\mathbb{1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{e}_\text{n}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\mathbb{1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\mathbb{1}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\mathbb{1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\mathbb{1}$

Photometric

Unified Metric NaturalGauss
luminous flux $\text{J}$ $\text{cd}$ $\mathbb{1}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\mathbb{1}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\mathbb{1}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\mathbb{1}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\mathbb{1}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\mathbb{1}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$