NaturalGauss -> SI2019

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.28808866819(39) \times 10^{-21}$ $\left[\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
angular time $1.28808866819(39) \times 10^{-21}$ $\left[\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
length $3.8615926796(12) \times 10^{-13}$ $\left[\text{m}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
angular length $3.8615926796(12) \times 10^{-13}$ $\left[\text{m}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
area $1.49118980230(91) \times 10^{-25}$ $\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
angular area $1.49118980230(91) \times 10^{-25}$ $\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
volume $5.7583676244(53) \times 10^{-38}$ $\left[\text{m}^{3}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$
wavenumber $2.58960507484(79) \times 10^{12}$ $\left[\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
angular wavenumber $2.58960507484(79) \times 10^{12}$ $\left[\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
fuel efficiency $6.7060544436(41) \times 10^{24}$ $\left[\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
number density $1.7366032619(16) \times 10^{37}$ $\left[\text{m}^{-3}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$
frequency $7.7634407063(24) \times 10^{20}$ $\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
angular frequency $7.7634407063(24) \times 10^{20}$ $\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
frequency drift $6.0271011601(37) \times 10^{41}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
stagnance $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}$
speed $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}$
acceleration $2.32742097189(71) \times 10^{29}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
jerk $1.8068794714(11) \times 10^{50}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\mathbb{1}\right]$ $\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
snap $1.4027601640(13) \times 10^{71}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\mathbb{1}\right]$ $\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$
crackle $1.0890245358(13) \times 10^{92}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\mathbb{1}\right]$ $\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{4}2^{4}$
pop $8.454577412(13) \times 10^{112}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\mathbb{1}\right]$ $\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{5}2^{5}$
volume flow $4.4704745618(27) \times 10^{-17}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
etendue $1.49118980230(91) \times 10^{-25}$ $\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
photon intensity $7.7634407063(24) \times 10^{20}$ $\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
photon irradiance $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
photon radiance $8637.9927371(26)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$

Mechanical Ratios

Name Quantity Product
inertia $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass $9.1093837016(28) \times 10^{-31}$ $\left[\text{kg}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mass flow $7.0720160238(43) \times 10^{-10}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
linear density $2.3589706262(14) \times 10^{-18}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
area density $6.1088023050(56) \times 10^{-6}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
density $1.5819385450(19) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
specific weight $3.6818369459(56) \times 10^{36}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$
specific volume $6.3213580777(77) \times 10^{-8}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
force $0.21201370668(13)$ $\left[\text{N}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
specific force $2.32742097189(71) \times 10^{29}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $1.4217754598(17) \times 10^{24}$ $\left[\text{Pa}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
compressibility $7.0334594194(86) \times 10^{-25}$ $\left[\text{Pa}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
viscosity $1831.3728585(17)$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
diffusivity $0.000115767636121(35)$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
rotational inertia $1.35838200810(42) \times 10^{-55}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-2}2^{-1}$
impulse $2.73092453076(84) \times 10^{-22}$ $\left[\text{N} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
momentum $2.73092453076(84) \times 10^{-22}$ $\left[\text{N} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
yank $1.6459558407(15) \times 10^{20}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
energy $8.1871057769(25) \times 10^{-14}$ $\left[\text{J}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
specific energy $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $5.4903177075(50) \times 10^{11}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
power $6.3560110255(39) \times 10^{7}$ $\left[\text{W}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
power density $1.1037869480(17) \times 10^{45}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$
irradiance $4.2623755981(52) \times 10^{32}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
radiance $4.2623755981(52) \times 10^{32}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
radiant intensity $6.3560110255(39) \times 10^{7}$ $\left[\text{W}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
spectral flux $1.6459558407(15) \times 10^{20}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
spectral exposure $7.0720160238(43) \times 10^{-10}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
sound exposure $2.6038009879(56) \times 10^{27}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\mathbb{1}\right]$ $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-14}\tau^{5}2^{7}$
impedance $3.1803680798(58) \times 10^{40}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\tau^{5}2^{6}$
specific impedance $4.7425324482(58) \times 10^{15}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
admittance $3.1442901416(58) \times 10^{-41}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\tau^{-5}2^{-6}$
compliance $1.8213882206(17) \times 10^{-12}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$
inertance $4.0965960843(63) \times 10^{19}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$

Electromagnetic Ratios

Name Quantity Product
charge $1.87554603778(14) \times 10^{-18}$ $\left[\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{e}\cdot \alpha^{-1/2}$
charge density $3.2570793671(32) \times 10^{19}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-13/2}\tau^{3}2^{3}$
linear charge density $4.8569235375(19) \times 10^{-6}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\tau\cdot 2$
exposure $2.05891649669(47) \times 10^{12}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}2^{-1}$
mobility $5.05347170034(39)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha^{1/2}\tau^{-1}$
current $1456.06904563(56)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\tau\cdot 2$
current density $9.7644782937(97) \times 10^{27}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-13/2}\tau^{3}2^{3}$
resistance $29.9792458163(46)$ $\left[\Omega\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
conductance $0.0333564095016(51)$ $\left[\text{S}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$
resistivity $1.15767636184(53) \times 10^{-11}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$
conductivity $8.6379927324(40) \times 10^{10}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau^{2}2$
capacitance $4.29660130905(66) \times 10^{-23}$ $\left[\text{F}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
inductance $3.8615926817(18) \times 10^{-20}$ $\left[\text{H}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$
reluctance $2.5896050734(12) \times 10^{19}$ $\left[\text{H}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau^{2}2$
permeance $3.8615926817(18) \times 10^{-20}$ $\left[\text{H}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$
permittivity $1.11265005545(17) \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$
permeability $1.00000000055(15) \times 10^{-7}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha\cdot \tau^{-1}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $6.3213580777(77) \times 10^{-8}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $0.000145606904643(33)$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}2$
electric potential $43651.851845(10)$ $\left[\text{V}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}2$
magnetic potential $1456.06904563(56)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\tau\cdot 2$
electric field $1.13041057063(61) \times 10^{17}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\tau\cdot 2^{2}$
magnetic field $3.7706437899(26) \times 10^{15}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$
electric flux $1.68565671533(13) \times 10^{-8}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1}$
magnetic flux $5.62274557064(43) \times 10^{-17}$ $\left[\text{Wb}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1}$
electric displacement $1.25775138409(87) \times 10^{7}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$
magnetic flux density $3.7706437919(20) \times 10^{8}$ $\left[\text{T}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\tau\cdot 2^{2}$
electric dipole moment $7.2425948497(17) \times 10^{-31}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1}2^{-1}$
magnetic dipole moment $2.17127531229(50) \times 10^{-22}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1}2^{-1}$
electric polarizability $6.4070480566(49) \times 10^{-48}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{5}\tau^{-2}2^{-3}$
magnetic polarizability $5.7583676244(53) \times 10^{-38}$ $\left[\text{m}^{3}\right]/\left[\mathbb{1}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$
magnetic moment $2.17127531348(83) \times 10^{-29}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-2}2^{-1}$
specific magnetization $0.041954070242(29)$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$
pole strength $5.62274556758(43) \times 10^{-10}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\text{c}\cdot \text{e}\cdot \alpha^{-1/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $5.9298965754(18) \times 10^{9}$ $\left[\text{K}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
entropy $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}$
specific entropy $1.51563381809(46) \times 10^{7}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
volume heat capacity $2.3976395570(22) \times 10^{14}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$
thermal conductivity $2.7756906378(17) \times 10^{10}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$
thermal conductance $0.0107185866478(33)$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
thermal resistivity $3.6027069673(22) \times 10^{-11}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$
thermal resistance $93.295882457(29)$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
thermal expansion $1.68637005265(52) \times 10^{-10}$ $\left[\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
lapse rate $1.53560902648(94) \times 10^{22}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$

Molar Ratios

Name Quantity Product
molar mass $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molality $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar amount $9.10938370469(26) \times 10^{-28}$ $\left[\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\mu_\text{eu}$
molarity $1.5819385456(15) \times 10^{10}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot \tau^{3}2^{3}$
molar volume $6.3213580755(58) \times 10^{-11}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$
molar entropy $15156.33817565(44)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$
molar energy $8.9875517843(28) \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar conductivity $1.41402394415(22) \times 10^{13}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\text{N}_\text{A}\cdot \hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot \mu_\text{eu}^{-1}2^{-1}$
molar susceptibility $6.3213580755(58) \times 10^{-11}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$
catalysis $7.0720160263(22) \times 10^{-7}$ $\left[\text{kat}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}\cdot \tau\cdot 2$
specificity $4.9075488603(30) \times 10^{10}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{-1}\tau^{-2}2^{-2}$
diffusion flux $7.8686790280(24) \times 10^{-24}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}\cdot \tau\cdot 2$

Photometric Ratios

Name Quantity Product
luminous flux $4.3412806809(27) \times 10^{10}$ $\left[\text{cd}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
luminous intensity $4.3412806809(27) \times 10^{10}$ $\left[\text{cd}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{2}$
luminance $2.9112864601(36) \times 10^{35}$ $\left[\text{lx}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
illuminance $2.9112864601(36) \times 10^{35}$ $\left[\text{lx}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$
luminous energy $5.5919544505(17) \times 10^{-11}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$
luminous exposure $3.7499950991(34) \times 10^{14}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified NaturalGauss SI2019
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\mathbb{1}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{s}$
length $\text{L}$ $\mathbb{1}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{m}$
area $\text{L}^{2}$ $\mathbb{1}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\mathbb{1}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\mathbb{1}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\mathbb{1}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\mathbb{1}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\mathbb{1}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\mathbb{1}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\mathbb{1}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\mathbb{1}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\mathbb{1}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\mathbb{1}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\mathbb{1}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\mathbb{1}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\mathbb{1}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\mathbb{1}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified NaturalGauss SI2019
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\mathbb{1}$ $\text{kg}$
mass $\text{M}$ $\mathbb{1}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\mathbb{1}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\mathbb{1}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\mathbb{1}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\mathbb{1}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\mathbb{1}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\mathbb{1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\mathbb{1}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\mathbb{1}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\mathbb{1}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\mathbb{1}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\mathbb{1}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\mathbb{1}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\mathbb{1}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\mathbb{1}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\mathbb{1}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\mathbb{1}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\mathbb{1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\mathbb{1}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified NaturalGauss SI2019
charge $\text{Q}$ $\text{e}_\text{n}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{e}_\text{n}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{e}_\text{n}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{e}_\text{n}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{e}_\text{n}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{e}_\text{n}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{e}_\text{n}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{e}_\text{n}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{e}_\text{n}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{e}_\text{n}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{e}_\text{n}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{e}_\text{n}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\mathbb{1}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{e}_\text{n}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{e}_\text{n}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{e}_\text{n}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}_\text{n}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\mathbb{1}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{e}_\text{n}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}_\text{n}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified NaturalGauss SI2019
temperature $\Theta$ $\mathbb{1}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\mathbb{1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\mathbb{1}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\mathbb{1}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\mathbb{1}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\mathbb{1}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\mathbb{1}$ $\text{m}^{-1}\text{K}$

Molar

Unified NaturalGauss SI2019
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\mathbb{1}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\mathbb{1}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\mathbb{1}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\mathbb{1}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\mathbb{1}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\mathbb{1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\mathbb{1}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified NaturalGauss SI2019
luminous flux $\text{J}$ $\mathbb{1}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\mathbb{1}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\mathbb{1}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\mathbb{1}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$