Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.28808866819(39)
\times 10^{-21}$
$\left[\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular time |
$1.28808866819(39)
\times 10^{-21}$
$\left[\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
length |
$3.8615926796(12)
\times 10^{-13}$
$\left[\text{m}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular length |
$3.8615926796(12)
\times 10^{-13}$
$\left[\text{m}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
area |
$1.49118980230(91)
\times 10^{-25}$
$\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
angular area |
$1.49118980230(91)
\times 10^{-25}$
$\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
volume |
$5.7583676244(53)
\times 10^{-38}$
$\left[\text{m}^{3}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
wavenumber |
$2.58960507484(79)
\times 10^{12}$
$\left[\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
angular wavenumber |
$2.58960507484(79)
\times 10^{12}$
$\left[\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
fuel efficiency |
$6.7060544436(41)
\times 10^{24}$
$\left[\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
number density |
$1.7366032619(16)
\times 10^{37}$
$\left[\text{m}^{-3}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
frequency |
$7.7634407063(24)
\times 10^{20}$
$\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
angular frequency |
$7.7634407063(24)
\times 10^{20}$
$\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
frequency drift |
$6.0271011601(37)
\times 10^{41}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
stagnance |
$3.3356409519815204
\times 10^{-9}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}$ |
speed |
$2.99792458 \times
10^{8}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}$ |
acceleration |
$2.32742097189(71)
\times 10^{29}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
jerk |
$1.8068794714(11)
\times 10^{50}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
snap |
$1.4027601640(13)
\times 10^{71}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
crackle |
$1.0890245358(13)
\times 10^{92}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{4}2^{4}$ |
pop |
$8.454577412(13)
\times 10^{112}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{5}2^{5}$ |
volume flow |
$4.4704745618(27)
\times 10^{-17}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
etendue |
$1.49118980230(91)
\times 10^{-25}$
$\left[\text{m}^{2}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
photon intensity |
$7.7634407063(24)
\times 10^{20}$
$\left[\text{Hz}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
photon irradiance |
$8637.9927371(26)$ $\left[\text{Hz}
\cdot
\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
photon radiance |
$8637.9927371(26)$ $\left[\text{Hz}
\cdot
\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
Name |
Quantity |
Product |
inertia |
$9.1093837016(28)
\times 10^{-31}$
$\left[\text{kg}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
mass |
$9.1093837016(28)
\times 10^{-31}$
$\left[\text{kg}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
mass flow |
$7.0720160238(43)
\times 10^{-10}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
linear density |
$2.3589706262(14)
\times 10^{-18}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
area density |
$6.1088023050(56)
\times 10^{-6}$ $\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
density |
$1.5819385450(19)
\times 10^{7}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
specific weight |
$3.6818369459(56)
\times 10^{36}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$ |
specific volume |
$6.3213580777(77)
\times 10^{-8}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
force |
$0.21201370668(13)$
$\left[\text{N}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
specific force |
$2.32742097189(71)
\times 10^{29}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$1.4217754598(17)
\times 10^{24}$
$\left[\text{Pa}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
compressibility |
$7.0334594194(86)
\times 10^{-25}$
$\left[\text{Pa}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
viscosity |
$1831.3728585(17)$ $\left[\text{Pa}
\cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
diffusivity |
$0.000115767636121(35)$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
rotational inertia |
$1.35838200810(42)
\times 10^{-55}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-2}2^{-1}$ |
impulse |
$2.73092453076(84)
\times 10^{-22}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
momentum |
$2.73092453076(84)
\times 10^{-22}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$1.6459558407(15)
\times 10^{20}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
energy |
$8.1871057769(25)
\times 10^{-14}$
$\left[\text{J}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}2$ |
specific energy |
$8.987551787368176
\times 10^{16}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$5.4903177075(50)
\times 10^{11}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
power |
$6.3560110255(39)
\times 10^{7}$
$\left[\text{W}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
power density |
$1.1037869480(17)
\times 10^{45}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$ |
irradiance |
$4.2623755981(52)
\times 10^{32}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
radiance |
$4.2623755981(52)
\times 10^{32}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
radiant intensity |
$6.3560110255(39)
\times 10^{7}$
$\left[\text{W}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
spectral flux |
$1.6459558407(15)
\times 10^{20}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
spectral exposure |
$7.0720160238(43)
\times 10^{-10}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
sound exposure |
$2.6038009879(56)
\times 10^{27}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{2}\text{c}\cdot
\text{R}_{\infty}^{7}\alpha^{-14}\tau^{5}2^{7}$ |
impedance |
$3.1803680798(58)
\times 10^{40}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-12}\tau^{5}2^{6}$ |
specific impedance |
$4.7425324482(58)
\times 10^{15}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
admittance |
$3.1442901416(58)
\times 10^{-41}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\tau^{-5}2^{-6}$ |
compliance |
$1.8213882206(17)
\times 10^{-12}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
inertance |
$4.0965960843(63)
\times 10^{19}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-10}\tau^{4}2^{5}$ |
Name |
Quantity |
Product |
charge |
$1.87554603778(14)
\times 10^{-18}$
$\left[\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{e}\cdot
\alpha^{-1/2}$ |
charge density |
$3.2570793671(32)
\times 10^{19}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-13/2}\tau^{3}2^{3}$ |
linear charge
density |
$4.8569235375(19)
\times 10^{-6}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}\cdot \alpha^{-5/2}\tau\cdot
2$ |
exposure |
$2.05891649669(47)
\times 10^{12}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}2^{-1}$ |
mobility |
$5.05347170034(39)$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\tau^{-1}$ |
current |
$1456.06904563(56)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-5/2}\tau\cdot 2$ |
current density |
$9.7644782937(97)
\times 10^{27}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-13/2}\tau^{3}2^{3}$ |
resistance |
$29.9792458163(46)$
$\left[\Omega\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot \tau^{-1}$ |
conductance |
$0.0333564095016(51)$
$\left[\text{S}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
resistivity |
$1.15767636184(53)
\times 10^{-11}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$ |
conductivity |
$8.6379927324(40)
\times 10^{10}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau^{2}2$ |
capacitance |
$4.29660130905(66)
\times 10^{-23}$
$\left[\text{F}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot
2^{-1}$ |
inductance |
$3.8615926817(18)
\times 10^{-20}$
$\left[\text{H}\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$ |
reluctance |
$2.5896050734(12)
\times 10^{19}$
$\left[\text{H}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau^{2}2$ |
permeance |
$3.8615926817(18)
\times 10^{-20}$
$\left[\text{H}\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$ |
permittivity |
$1.11265005545(17)
\times 10^{-10}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
permeability |
$1.00000000055(15)
\times 10^{-7}$ $\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$6.3213580777(77)
\times 10^{-8}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$0.000145606904643(33)$
$\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}2$ |
electric potential |
$43651.851845(10)$
$\left[\text{V}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}2$ |
magnetic potential |
$1456.06904563(56)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-5/2}\tau\cdot 2$ |
electric field |
$1.13041057063(61)
\times 10^{17}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\tau\cdot
2^{2}$ |
magnetic field |
$3.7706437899(26)
\times 10^{15}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$ |
electric flux |
$1.68565671533(13)
\times 10^{-8}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\alpha^{1/2}\tau^{-1}$ |
magnetic flux |
$5.62274557064(43)
\times 10^{-17}$
$\left[\text{Wb}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\alpha^{1/2}\tau^{-1}$ |
electric
displacement |
$1.25775138409(87)
\times 10^{7}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$ |
magnetic flux
density |
$3.7706437919(20)
\times 10^{8}$
$\left[\text{T}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\tau\cdot
2^{2}$ |
electric dipole
moment |
$7.2425948497(17)
\times 10^{-31}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1}2^{-1}$ |
magnetic dipole
moment |
$2.17127531229(50)
\times 10^{-22}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1}2^{-1}$ |
electric
polarizability |
$6.4070480566(49)
\times 10^{-48}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{5}\tau^{-2}2^{-3}$ |
magnetic
polarizability |
$5.7583676244(53)
\times 10^{-38}$
$\left[\text{m}^{3}\right]/\left[\mathbb{1}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
magnetic moment |
$2.17127531348(83)
\times 10^{-29}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-2}2^{-1}$ |
specific
magnetization |
$0.041954070242(29)$
$\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-9/2}\tau^{2}2^{2}$ |
pole strength |
$5.62274556758(43)
\times 10^{-10}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\text{c}\cdot
\text{e}\cdot \alpha^{-1/2}$ |
Name |
Quantity |
Product |
temperature |
$5.9298965754(18)
\times 10^{9}$
$\left[\text{K}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$1.51563381809(46)
\times 10^{7}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
volume heat capacity |
$2.3976395570(22)
\times 10^{14}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
thermal conductivity |
$2.7756906378(17)
\times 10^{10}$ $\left[\text{W} \cdot
\text{m}^{-1}
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
thermal conductance |
$0.0107185866478(33)$
$\left[\text{W} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
thermal resistivity |
$3.6027069673(22)
\times 10^{-11}$ $\left[\text{K} \cdot
\text{m} \cdot
\text{W}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
thermal resistance |
$93.295882457(29)$ $\left[\text{K}
\cdot
\text{W}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
thermal expansion |
$1.68637005265(52)
\times 10^{-10}$
$\left[\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
lapse rate |
$1.53560902648(94)
\times 10^{22}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot
2^{2}$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$9.10938370469(26)
\times 10^{-28}$
$\left[\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molarity |
$1.5819385456(15)
\times 10^{10}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
molar volume |
$6.3213580755(58)
\times 10^{-11}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar entropy |
$15156.33817565(44)$ $\left[\text{J}
\cdot \text{K}^{-1}
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}$ |
molar energy |
$8.9875517843(28)
\times 10^{13}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar conductivity |
$1.41402394415(22)
\times 10^{13}$ $\left[\text{S} \cdot
\text{m}^2
\text{mol}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot
\mu_\text{eu}^{-1}2^{-1}$ |
molar susceptibility |
$6.3213580755(58)
\times 10^{-11}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
catalysis |
$7.0720160263(22)
\times 10^{-7}$
$\left[\text{kat}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}\cdot
\tau\cdot 2$ |
specificity |
$4.9075488603(30)
\times 10^{10}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{-1}\tau^{-2}2^{-2}$ |
diffusion flux |
$7.8686790280(24)
\times 10^{-24}$
$\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}\cdot \tau\cdot 2$ |
|
Unified |
NaturalGauss |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\mathbb{1}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\mathbb{1}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\mathbb{1}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\mathbb{1}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\mathbb{1}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\mathbb{1}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\mathbb{1}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\mathbb{1}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\mathbb{1}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\mathbb{1}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\mathbb{1}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\mathbb{1}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\mathbb{1}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\mathbb{1}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
NaturalGauss |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\mathbb{1}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\mathbb{1}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\mathbb{1}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\mathbb{1}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\mathbb{1}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\mathbb{1}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\mathbb{1}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\mathbb{1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\mathbb{1}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\mathbb{1}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\mathbb{1}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
NaturalGauss |
SI2019 |
charge |
$\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{e}_\text{n}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{e}_\text{n}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{e}_\text{n}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{e}_\text{n}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{e}_\text{n}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{e}_\text{n}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
NaturalGauss |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\mathbb{1}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\mathbb{1}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{e}_\text{n}^{2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\mathbb{1}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |