Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$5.391247(59) \times
10^{-44}$
$\left[\text{s}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular time |
$5.391247(59) \times
10^{-44}$
$\left[\text{s}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
length |
$1.616255(18) \times
10^{-35}$
$\left[\text{m}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular length |
$1.616255(18) \times
10^{-35}$
$\left[\text{m}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$ |
area |
$2.612281(58) \times
10^{-70}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
angular area |
$2.612281(58) \times
10^{-70}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
volume |
$4.22211(14) \times
10^{-105}$
$\left[\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$ |
wavenumber |
$6.187141(68) \times
10^{34}$
$\left[\text{m}^{-1}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau$ |
angular wavenumber |
$6.187141(68) \times
10^{34}$
$\left[\text{m}^{-1}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau$ |
fuel efficiency |
$3.828072(84) \times
10^{69}$
$\left[\text{m}^{-2}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$ |
number density |
$2.368482(78) \times
10^{104}$
$\left[\text{m}^{-3}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$ |
frequency |
$1.854858(20) \times
10^{43}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
angular frequency |
$1.854858(20) \times
10^{43}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
frequency drift |
$3.440499(76) \times
10^{86}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{2}\tau^{2}$ |
stagnance |
$3.3356409519815204
\times 10^{-9}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}$ |
speed |
$2.99792458 \times
10^{8}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}$ |
acceleration |
$5.560725(61) \times
10^{51}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot
\tau$ |
jerk |
$1.031436(23) \times
10^{95}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{2}\tau^{2}$ |
snap |
$1.913167(63) \times
10^{138}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-3}\text{c}^{7}\text{m}_\text{P}^{3}\tau^{3}$ |
crackle |
$3.54865(16) \times
10^{181}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-4}\text{c}^{9}\text{m}_\text{P}^{4}\tau^{4}$ |
pop |
$6.58225(36) \times
10^{224}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{m}_\text{P}^{5}\right]$ |
$\hbar^{-5}\text{c}^{11}\text{m}_\text{P}^{5}\tau^{5}$ |
volume flow |
$7.83142(17) \times
10^{-62}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-2}$ |
etendue |
$2.612281(58) \times
10^{-70}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
photon intensity |
$1.854858(20) \times
10^{43}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
photon irradiance |
$2.063808(23) \times
10^{26}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot
\tau$ |
photon radiance |
$2.063808(23) \times
10^{26}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot
\tau$ |
Name |
Quantity |
Product |
inertia |
$2.176434(24) \times
10^{-8}$
$\left[\text{kg}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{m}_\text{P}$ |
mass |
$2.176434(24) \times
10^{-8}$
$\left[\text{kg}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{m}_\text{P}$ |
mass flow |
$4.036977(89) \times
10^{35}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau$ |
linear density |
$1.346590(30) \times
10^{27}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{m}_\text{P}^{2}\tau$ |
area density |
$8.33155(28) \times
10^{61}$ $\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{3}\tau^{2}$ |
density |
$5.15485(23) \times
10^{96}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$ |
specific weight |
$2.86647(16) \times
10^{148}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{m}_\text{P}^{5}\right]$ |
$\hbar^{-4}\text{c}^{6}\text{m}_\text{P}^{5}\tau^{4}$ |
specific volume |
$1.939922(86) \times
10^{-97}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$ |
force |
$1.210255(27) \times
10^{44}$
$\left[\text{N}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}\tau$ |
specific force |
$5.560725(61) \times
10^{51}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{m}_\text{P}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot
\tau$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$4.63294(20) \times
10^{113}$
$\left[\text{Pa}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau^{3}$ |
compressibility |
$2.158455(95) \times
10^{-114}$
$\left[\text{Pa}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$ |
viscosity |
$2.497735(83) \times
10^{70}$ $\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{2}$ |
diffusivity |
$4.845411(53) \times
10^{-27}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar\cdot
\text{m}_\text{P}^{-1}\tau^{-1}$ |
rotational inertia |
$5.685457(63) \times
10^{-78}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-2}$ |
impulse |
$6.524785(72)$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{c}\cdot
\text{m}_\text{P}$ |
momentum |
$6.524785(72)$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{c}\cdot
\text{m}_\text{P}$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$2.244852(74) \times
10^{87}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{2}$ |
energy |
$1.956081(22) \times
10^{9}$
$\left[\text{J}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{c}^{2}\text{m}_\text{P}$ |
specific energy |
$8.987551787368176
\times 10^{16}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$7.48802(25) \times
10^{78}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{2}$ |
power |
$3.628254(80) \times
10^{52}$
$\left[\text{W}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}\tau$ |
power density |
$8.59345(47) \times
10^{156}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{m}_\text{P}^{5}\right]$ |
$\hbar^{-4}\text{c}^{7}\text{m}_\text{P}^{5}\tau^{4}$ |
irradiance |
$1.388922(61) \times
10^{122}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau^{3}$ |
radiance |
$1.388922(61) \times
10^{122}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau^{3}$ |
radiant intensity |
$3.628254(80) \times
10^{52}$
$\left[\text{W}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}\tau$ |
spectral flux |
$2.244852(74) \times
10^{87}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{2}$ |
spectral exposure |
$4.036977(89) \times
10^{35}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau$ |
sound exposure |
$1.157186(89) \times
10^{184}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{m}_\text{P}^{7}\right]$ |
$\hbar^{-5}\text{c}^{8}\text{m}_\text{P}^{7}\tau^{5}$ |
impedance |
$5.91584(39) \times
10^{174}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{6}\right]$ |
$\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{5}$ |
specific impedance |
$1.545384(68) \times
10^{105}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{4}\text{m}_\text{P}^{4}\tau^{3}$ |
admittance |
$1.69038(11) \times
10^{-175}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{m}_\text{P}^{-6}\right]$ |
$\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-5}$ |
compliance |
$1.335467(44) \times
10^{-79}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{m}_\text{P}^{-3}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-2}$ |
inertance |
$3.18938(18) \times
10^{131}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{m}_\text{P}^{5}\right]$ |
$\hbar^{-4}\text{c}^{4}\text{m}_\text{P}^{5}\tau^{4}$ |
Name |
Quantity |
Product |
charge |
$1.8755460382902114
\times 10^{-18}$
$\left[\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\hbar^{1/2}\text{c}^{-1/2}\tau^{-1/2}2^{7/2}5^{7/2}$ |
charge density |
$4.44220(15) \times
10^{86}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]$ |
$\hbar^{-5/2}\text{c}^{5/2}\text{m}_\text{P}^{3}\tau^{5/2}2^{7/2}5^{7/2}$ |
linear charge
density |
$1.160427(13) \times
10^{17}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]$ |
$\hbar^{-1/2}\text{c}^{1/2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{7/2}5^{7/2}$ |
exposure |
$8.617519(95) \times
10^{-11}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ |
$\hbar^{1/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{7/2}5^{7/2}$ |
mobility |
$5.053471698958767$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{1/2}\text{c}^{5/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$ |
current |
$3.478872(38) \times
10^{25}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]$ |
$\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{7/2}5^{7/2}$ |
current density |
$1.331737(44) \times
10^{95}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]$ |
$\hbar^{-5/2}\text{c}^{7/2}\text{m}_\text{P}^{3}\tau^{5/2}2^{7/2}5^{7/2}$ |
resistance |
$29.979245799999998$
$\left[\Omega\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$\text{c}\cdot
2^{-7}5^{-7}$ |
conductance |
$0.0333564095198152$
$\left[\text{S}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\text{c}^{-1}2^{7}5^{7}$ |
resistivity |
$4.845411(53) \times
10^{-34}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$ |
conductivity |
$2.063808(23) \times
10^{33}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot \tau\cdot
2^{7}5^{7}$ |
capacitance |
$1.798327(20) \times
10^{-45}$
$\left[\text{F}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}\right]$ |
$\hbar\cdot
\text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}2^{7}5^{7}$ |
inductance |
$1.616255(18) \times
10^{-42}$
$\left[\text{H}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$ |
reluctance |
$6.187141(68) \times
10^{41}$
$\left[\text{H}^{-1}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau\cdot 2^{7}5^{7}$ |
permeance |
$1.616255(18) \times
10^{-42}$
$\left[\text{H}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$ |
permittivity |
$1.1126500560536183
\times 10^{-10}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ |
$\text{c}^{-2}2^{7}5^{7}$ |
permeability |
$1.0 \times
10^{-7}$ $\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-2}\right]$ |
$2^{-7}5^{-7}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$1.939922(86) \times
10^{-97}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$3.478872(38) \times
10^{18}$ $\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-7/2}5^{-7/2}$ |
electric potential |
$1.042940(12) \times
10^{27}$
$\left[\text{V}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{-1/2}\text{c}^{5/2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-7/2}5^{-7/2}$ |
magnetic potential |
$3.478872(38) \times
10^{25}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]$ |
$\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{7/2}5^{7/2}$ |
electric field |
$6.45282(14) \times
10^{61}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{-3/2}\text{c}^{7/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{-7/2}5^{-7/2}$ |
magnetic field |
$2.152427(47) \times
10^{60}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ |
$\hbar^{-3/2}\text{c}^{5/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$ |
electric flux |
$1.6856567148726493
\times 10^{-8}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{1/2}\text{c}^{3/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$ |
magnetic flux |
$5.622745569111847
\times 10^{-17}$
$\left[\text{Wb}\right]/\left[\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$ |
electric
displacement |
$7.17973(16) \times
10^{51}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ |
$\hbar^{-3/2}\text{c}^{3/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$ |
magnetic flux
density |
$2.152427(47) \times
10^{53}$
$\left[\text{T}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{-3/2}\text{c}^{5/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{-7/2}5^{-7/2}$ |
electric dipole
moment |
$3.031361(33) \times
10^{-53}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ |
$\hbar^{3/2}\text{c}^{-3/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{7/2}5^{7/2}$ |
magnetic dipole
moment |
$9.08779(10) \times
10^{-45}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ |
$\hbar^{3/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{7/2}5^{7/2}$ |
electric
polarizability |
$4.69773(16) \times
10^{-115}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}\right]$ |
$\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-3}2^{7}5^{7}$ |
magnetic
polarizability |
$4.22211(14) \times
10^{-105}$
$\left[\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$ |
magnetic moment |
$9.08779(10) \times
10^{-52}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}\right]$ |
$\hbar^{3/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{-7/2}5^{-7/2}$ |
specific
magnetization |
$2.394899(53) \times
10^{43}$ $\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ |
$\hbar^{-3/2}\text{c}^{1/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$ |
pole strength |
$5.622745569111847
\times 10^{-10}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ |
$\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{7/2}5^{7/2}$ |
Name |
Quantity |
Product |
temperature |
$1.416784(16) \times
10^{32}$
$\left[\text{K}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}\cdot 2^{-4}5^{-3}$ |
entropy |
$1.38064899953(43)
\times 10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$ |
specific entropy |
$6.343629(70) \times
10^{-16}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$ |
volume heat capacity |
$3.27004(11) \times
10^{81}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar^{-2}\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{3}\tau^{3}2^{4}5^{3}$ |
thermal conductivity |
$1.584470(35) \times
10^{55}$ $\left[\text{W} \cdot
\text{m}^{-1}
\text{K}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar^{-1}\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{2}\tau^{2}2^{4}5^{3}$ |
thermal conductance |
$2.560908(28) \times
10^{20}$ $\left[\text{W} \cdot
\text{K}^{-1}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}\cdot
\tau\cdot 2^{4}5^{3}$ |
thermal resistivity |
$6.31126(14) \times
10^{-56}$ $\left[\text{K} \cdot \text{m}
\cdot
\text{W}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar\cdot
\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{-2}\tau^{-2}2^{-4}5^{-3}$ |
thermal resistance |
$3.904865(43) \times
10^{-21}$ $\left[\text{K} \cdot
\text{W}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{-1}\tau^{-1}2^{-4}5^{-3}$ |
thermal expansion |
$7.058239(78) \times
10^{-33}$
$\left[\text{K}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$ |
lapse rate |
$8.76584(19) \times
10^{66}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}\tau\cdot
2^{-4}5^{-3}$ |
Name |
Quantity |
Product |
molar mass |
$0.001$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$2^{-3}5^{-3}$ |
molality |
$1000.0$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$2^{3}5^{3}$ |
molar amount |
$2.176434(24) \times
10^{-5}$
$\left[\text{mol}\right]/\left[\text{m}_\text{P}\right]$ |
$\text{m}_\text{P}\cdot 2^{3}5^{3}$ |
molarity |
$5.15485(23) \times
10^{99}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{m}_\text{P}^{4}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}2^{3}5^{3}$ |
molar volume |
$1.939922(86) \times
10^{-100}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}2^{-3}5^{-3}$ |
molar entropy |
$6.343629(70) \times
10^{-19}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ |
molar energy |
$8.987551787368177
\times 10^{13}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}2^{-3}5^{-3}$ |
molar conductivity |
$2.477101(55) \times
10^{-32}$ $\left[\text{S} \cdot \text{m}^2
\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2^{4}5^{4}$ |
molar susceptibility |
$1.939922(86) \times
10^{-100}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}2^{-3}5^{-3}$ |
catalysis |
$4.036977(89) \times
10^{38}$
$\left[\text{kat}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot
2^{3}5^{3}$ |
specificity |
$3.59828(12) \times
10^{-57}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-3}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-3}\tau^{-2}2^{-3}5^{-3}$ |
diffusion flux |
$4.491742(99) \times
10^{21}$ $\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{m}_\text{P}^{2}\right]$ |
$\hbar^{-1}\text{m}_\text{P}^{2}\tau\cdot
2^{3}5^{3}$ |
|
Unified |
PlanckGauss |
Metric |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{m}_\text{P}^{-2}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}_\text{P}^{-2}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}_\text{P}^{-3}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}_\text{P}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}_\text{P}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}_\text{P}^{2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}_\text{P}^{3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{m}_\text{P}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{m}_\text{P}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{m}_\text{P}^{2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}_\text{P}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}_\text{P}^{2}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}_\text{P}^{3}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}_\text{P}^{4}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}_\text{P}^{5}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}_\text{P}^{-2}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}_\text{P}^{-2}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{P}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{m}_\text{P}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{m}_\text{P}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
PlanckGauss |
Metric |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{m}_\text{P}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\text{m}_\text{P}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{m}_\text{P}^{3}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{m}_\text{P}^{4}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{m}_\text{P}^{5}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}_\text{P}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{m}_\text{P}^{2}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}_\text{P}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{m}_\text{P}^{4}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{m}_\text{P}^{-4}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{m}_\text{P}^{3}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{m}_\text{P}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{m}_\text{P}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{m}_\text{P}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{m}_\text{P}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{m}_\text{P}^{3}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{m}_\text{P}^{5}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{m}_\text{P}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{P}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{P}^{2}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{m}_\text{P}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{m}_\text{P}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{m}_\text{P}^{7}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{m}_\text{P}^{6}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{m}_\text{P}^{4}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{m}_\text{P}^{-6}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m}_\text{P}^{-3}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{m}_\text{P}^{5}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
PlanckGauss |
Metric |
charge |
$\text{Q}$ |
$\text{e}_\text{n}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}_\text{P}^{3}\text{e}_\text{n}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}_\text{P}^{3}\text{e}_\text{n}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{e}_\text{n}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{e}_\text{n}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{e}_\text{n}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{e}_\text{n}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{e}_\text{n}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{P}^{-3}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{e}_\text{n}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
PlanckGauss |
Metric |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{m}_\text{P}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}_\text{P}^{4}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{m}_\text{P}^{2}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}_\text{P}^{-3}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}_\text{P}^{2}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |