PlanckGauss -> Metric

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $5.391247(59) \times 10^{-44}$ $\left[\text{s}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular time $5.391247(59) \times 10^{-44}$ $\left[\text{s}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
length $1.616255(18) \times 10^{-35}$ $\left[\text{m}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$
angular length $1.616255(18) \times 10^{-35}$ $\left[\text{m}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$
area $2.612281(58) \times 10^{-70}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
angular area $2.612281(58) \times 10^{-70}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
volume $4.22211(14) \times 10^{-105}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$
wavenumber $6.187141(68) \times 10^{34}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau$
angular wavenumber $6.187141(68) \times 10^{34}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau$
fuel efficiency $3.828072(84) \times 10^{69}$ $\left[\text{m}^{-2}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$
number density $2.368482(78) \times 10^{104}$ $\left[\text{m}^{-3}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$
frequency $1.854858(20) \times 10^{43}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
angular frequency $1.854858(20) \times 10^{43}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
frequency drift $3.440499(76) \times 10^{86}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{2}\tau^{2}$
stagnance $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}$
speed $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}$
acceleration $5.560725(61) \times 10^{51}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot \tau$
jerk $1.031436(23) \times 10^{95}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{2}\tau^{2}$
snap $1.913167(63) \times 10^{138}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-3}\text{c}^{7}\text{m}_\text{P}^{3}\tau^{3}$
crackle $3.54865(16) \times 10^{181}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-4}\text{c}^{9}\text{m}_\text{P}^{4}\tau^{4}$
pop $6.58225(36) \times 10^{224}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{m}_\text{P}^{5}\right]$ $\hbar^{-5}\text{c}^{11}\text{m}_\text{P}^{5}\tau^{5}$
volume flow $7.83142(17) \times 10^{-62}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\right]$ $\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-2}$
etendue $2.612281(58) \times 10^{-70}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{P}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
photon intensity $1.854858(20) \times 10^{43}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
photon irradiance $2.063808(23) \times 10^{26}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau$
photon radiance $2.063808(23) \times 10^{26}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau$

Mechanical Ratios

Name Quantity Product
inertia $2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]/\left[\text{m}_\text{P}\right]$ $\text{m}_\text{P}$
mass $2.176434(24) \times 10^{-8}$ $\left[\text{kg}\right]/\left[\text{m}_\text{P}\right]$ $\text{m}_\text{P}$
mass flow $4.036977(89) \times 10^{35}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau$
linear density $1.346590(30) \times 10^{27}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}^{2}\tau$
area density $8.33155(28) \times 10^{61}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{3}\tau^{2}$
density $5.15485(23) \times 10^{96}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$
specific weight $2.86647(16) \times 10^{148}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{m}_\text{P}^{5}\right]$ $\hbar^{-4}\text{c}^{6}\text{m}_\text{P}^{5}\tau^{4}$
specific volume $1.939922(86) \times 10^{-97}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$
force $1.210255(27) \times 10^{44}$ $\left[\text{N}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}\tau$
specific force $5.560725(61) \times 10^{51}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{P}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot \tau$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $4.63294(20) \times 10^{113}$ $\left[\text{Pa}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau^{3}$
compressibility $2.158455(95) \times 10^{-114}$ $\left[\text{Pa}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ $\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$
viscosity $2.497735(83) \times 10^{70}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{2}$
diffusivity $4.845411(53) \times 10^{-27}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1}$
rotational inertia $5.685457(63) \times 10^{-78}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-2}$
impulse $6.524785(72)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{P}\right]$ $\text{c}\cdot \text{m}_\text{P}$
momentum $6.524785(72)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{P}\right]$ $\text{c}\cdot \text{m}_\text{P}$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
yank $2.244852(74) \times 10^{87}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{2}$
energy $1.956081(22) \times 10^{9}$ $\left[\text{J}\right]/\left[\text{m}_\text{P}\right]$ $\text{c}^{2}\text{m}_\text{P}$
specific energy $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $7.48802(25) \times 10^{78}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{2}$
power $3.628254(80) \times 10^{52}$ $\left[\text{W}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}\tau$
power density $8.59345(47) \times 10^{156}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{m}_\text{P}^{5}\right]$ $\hbar^{-4}\text{c}^{7}\text{m}_\text{P}^{5}\tau^{4}$
irradiance $1.388922(61) \times 10^{122}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau^{3}$
radiance $1.388922(61) \times 10^{122}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau^{3}$
radiant intensity $3.628254(80) \times 10^{52}$ $\left[\text{W}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}\tau$
spectral flux $2.244852(74) \times 10^{87}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{2}$
spectral exposure $4.036977(89) \times 10^{35}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau$
sound exposure $1.157186(89) \times 10^{184}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{m}_\text{P}^{7}\right]$ $\hbar^{-5}\text{c}^{8}\text{m}_\text{P}^{7}\tau^{5}$
impedance $5.91584(39) \times 10^{174}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{6}\right]$ $\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{5}$
specific impedance $1.545384(68) \times 10^{105}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{4}\text{m}_\text{P}^{4}\tau^{3}$
admittance $1.69038(11) \times 10^{-175}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{m}_\text{P}^{-6}\right]$ $\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-5}$
compliance $1.335467(44) \times 10^{-79}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{m}_\text{P}^{-3}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-2}$
inertance $3.18938(18) \times 10^{131}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{m}_\text{P}^{5}\right]$ $\hbar^{-4}\text{c}^{4}\text{m}_\text{P}^{5}\tau^{4}$

Electromagnetic Ratios

Name Quantity Product
charge $1.8755460382902114 \times 10^{-18}$ $\left[\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\tau^{-1/2}2^{7/2}5^{7/2}$
charge density $4.44220(15) \times 10^{86}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]$ $\hbar^{-5/2}\text{c}^{5/2}\text{m}_\text{P}^{3}\tau^{5/2}2^{7/2}5^{7/2}$
linear charge density $1.160427(13) \times 10^{17}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{m}_\text{P}\cdot \tau^{1/2}2^{7/2}5^{7/2}$
exposure $8.617519(95) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{7/2}5^{7/2}$
mobility $5.053471698958767$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{5/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
current $3.478872(38) \times 10^{25}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]$ $\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot \tau^{1/2}2^{7/2}5^{7/2}$
current density $1.331737(44) \times 10^{95}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]$ $\hbar^{-5/2}\text{c}^{7/2}\text{m}_\text{P}^{3}\tau^{5/2}2^{7/2}5^{7/2}$
resistance $29.979245799999998$ $\left[\Omega\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\text{c}\cdot 2^{-7}5^{-7}$
conductance $0.0333564095198152$ $\left[\text{S}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\text{c}^{-1}2^{7}5^{7}$
resistivity $4.845411(53) \times 10^{-34}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$
conductivity $2.063808(23) \times 10^{33}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau\cdot 2^{7}5^{7}$
capacitance $1.798327(20) \times 10^{-45}$ $\left[\text{F}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}2^{7}5^{7}$
inductance $1.616255(18) \times 10^{-42}$ $\left[\text{H}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$
reluctance $6.187141(68) \times 10^{41}$ $\left[\text{H}^{-1}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau\cdot 2^{7}5^{7}$
permeance $1.616255(18) \times 10^{-42}$ $\left[\text{H}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}2^{-7}5^{-7}$
permittivity $1.1126500560536183 \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\text{c}^{-2}2^{7}5^{7}$
permeability $1.0 \times 10^{-7}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $2^{-7}5^{-7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $1.939922(86) \times 10^{-97}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $3.478872(38) \times 10^{18}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-7/2}5^{-7/2}$
electric potential $1.042940(12) \times 10^{27}$ $\left[\text{V}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}\right]$ $\hbar^{-1/2}\text{c}^{5/2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-7/2}5^{-7/2}$
magnetic potential $3.478872(38) \times 10^{25}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]$ $\hbar^{-1/2}\text{c}^{3/2}\text{m}_\text{P}\cdot \tau^{1/2}2^{7/2}5^{7/2}$
electric field $6.45282(14) \times 10^{61}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]$ $\hbar^{-3/2}\text{c}^{7/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{-7/2}5^{-7/2}$
magnetic field $2.152427(47) \times 10^{60}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ $\hbar^{-3/2}\text{c}^{5/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$
electric flux $1.6856567148726493 \times 10^{-8}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
magnetic flux $5.622745569111847 \times 10^{-17}$ $\left[\text{Wb}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
electric displacement $7.17973(16) \times 10^{51}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ $\hbar^{-3/2}\text{c}^{3/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$
magnetic flux density $2.152427(47) \times 10^{53}$ $\left[\text{T}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]$ $\hbar^{-3/2}\text{c}^{5/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{-7/2}5^{-7/2}$
electric dipole moment $3.031361(33) \times 10^{-53}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ $\hbar^{3/2}\text{c}^{-3/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{7/2}5^{7/2}$
magnetic dipole moment $9.08779(10) \times 10^{-45}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]$ $\hbar^{3/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{7/2}5^{7/2}$
electric polarizability $4.69773(16) \times 10^{-115}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}\right]$ $\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-3}2^{7}5^{7}$
magnetic polarizability $4.22211(14) \times 10^{-105}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{P}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$
magnetic moment $9.08779(10) \times 10^{-52}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}\right]$ $\hbar^{3/2}\text{c}^{-1/2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{-7/2}5^{-7/2}$
specific magnetization $2.394899(53) \times 10^{43}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]$ $\hbar^{-3/2}\text{c}^{1/2}\text{m}_\text{P}^{2}\tau^{3/2}2^{7/2}5^{7/2}$
pole strength $5.622745569111847 \times 10^{-10}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{7/2}5^{7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $1.416784(16) \times 10^{32}$ $\left[\text{K}\right]/\left[\text{m}_\text{P}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot 2^{-4}5^{-3}$
entropy $1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$
specific entropy $6.343629(70) \times 10^{-16}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$
volume heat capacity $3.27004(11) \times 10^{81}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{-2}\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{3}\tau^{3}2^{4}5^{3}$
thermal conductivity $1.584470(35) \times 10^{55}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar^{-1}\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{2}\tau^{2}2^{4}5^{3}$
thermal conductance $2.560908(28) \times 10^{20}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{m}_\text{P}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}\cdot \tau\cdot 2^{4}5^{3}$
thermal resistivity $6.31126(14) \times 10^{-56}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{-2}\tau^{-2}2^{-4}5^{-3}$
thermal resistance $3.904865(43) \times 10^{-21}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{-1}\tau^{-1}2^{-4}5^{-3}$
thermal expansion $7.058239(78) \times 10^{-33}$ $\left[\text{K}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2^{4}5^{3}$
lapse rate $8.76584(19) \times 10^{66}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}\tau\cdot 2^{-4}5^{-3}$

Molar Ratios

Name Quantity Product
molar mass $0.001$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $2^{-3}5^{-3}$
molality $1000.0$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $2^{3}5^{3}$
molar amount $2.176434(24) \times 10^{-5}$ $\left[\text{mol}\right]/\left[\text{m}_\text{P}\right]$ $\text{m}_\text{P}\cdot 2^{3}5^{3}$
molarity $5.15485(23) \times 10^{99}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}2^{3}5^{3}$
molar volume $1.939922(86) \times 10^{-100}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}2^{-3}5^{-3}$
molar entropy $6.343629(70) \times 10^{-19}$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$
molar energy $8.987551787368177 \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}2^{-3}5^{-3}$
molar conductivity $2.477101(55) \times 10^{-32}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2^{4}5^{4}$
molar susceptibility $1.939922(86) \times 10^{-100}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}2^{-3}5^{-3}$
catalysis $4.036977(89) \times 10^{38}$ $\left[\text{kat}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot 2^{3}5^{3}$
specificity $3.59828(12) \times 10^{-57}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{m}_\text{P}^{-3}\right]$ $\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-3}\tau^{-2}2^{-3}5^{-3}$
diffusion flux $4.491742(99) \times 10^{21}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{m}_\text{P}^{2}\tau\cdot 2^{3}5^{3}$

Photometric Ratios

Name Quantity Product
luminous flux $2.478169(55) \times 10^{55}$ $\left[\text{cd}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{2}\tau$
luminous intensity $2.478169(55) \times 10^{55}$ $\left[\text{cd}\right]/\left[\text{m}_\text{P}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{2}\tau$
luminance $9.48661(42) \times 10^{124}$ $\left[\text{lx}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{4}\tau^{3}$
illuminance $9.48661(42) \times 10^{124}$ $\left[\text{lx}\right]/\left[\text{m}_\text{P}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{4}\tau^{3}$
luminous energy $1.336042(15) \times 10^{12}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{m}_\text{P}\right]$ $\text{c}^{2}\text{K}_\text{cd}\cdot \text{m}_\text{P}$
luminous exposure $5.11447(17) \times 10^{81}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{m}_\text{P}^{3}\right]$ $\hbar^{-2}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{3}\tau^{2}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified PlanckGauss Metric
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{m}_\text{P}^{-1}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{s}$
length $\text{L}$ $\text{m}_\text{P}^{-1}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{m}$
area $\text{L}^{2}$ $\text{m}_\text{P}^{-2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}_\text{P}^{-2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{m}_\text{P}^{-3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{m}_\text{P}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}_\text{P}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}_\text{P}^{2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{m}_\text{P}^{3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{m}_\text{P}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{m}_\text{P}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{m}_\text{P}^{2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}_\text{P}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}_\text{P}^{2}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}_\text{P}^{3}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}_\text{P}^{4}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}_\text{P}^{5}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}_\text{P}^{-2}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}_\text{P}^{-2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{P}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{m}_\text{P}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{m}_\text{P}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified PlanckGauss Metric
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{m}_\text{P}$ $\text{kg}$
mass $\text{M}$ $\text{m}_\text{P}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{m}_\text{P}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{m}_\text{P}^{2}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{m}_\text{P}^{3}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{m}_\text{P}^{4}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{m}_\text{P}^{5}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{m}_\text{P}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{m}_\text{P}^{2}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}_\text{P}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{m}_\text{P}^{4}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{m}_\text{P}^{-4}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{m}_\text{P}^{3}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{m}_\text{P}^{-1}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{m}_\text{P}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{m}_\text{P}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{m}_\text{P}^{3}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{m}_\text{P}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\mathbb{1}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{m}_\text{P}^{3}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{m}_\text{P}^{2}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{m}_\text{P}^{5}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{m}_\text{P}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{P}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{P}^{2}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{m}_\text{P}^{3}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{m}_\text{P}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{m}_\text{P}^{7}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{m}_\text{P}^{6}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{m}_\text{P}^{4}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{m}_\text{P}^{-6}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m}_\text{P}^{-3}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{m}_\text{P}^{5}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified PlanckGauss Metric
charge $\text{Q}$ $\text{e}_\text{n}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}_\text{P}^{3}\text{e}_\text{n}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}_\text{P}^{3}\text{e}_\text{n}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{e}_\text{n}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{e}_\text{n}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{e}_\text{n}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{P}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{P}^{-3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}_\text{n}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified PlanckGauss Metric
temperature $\Theta$ $\text{m}_\text{P}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{m}_\text{P}^{3}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{m}_\text{P}^{2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{m}_\text{P}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{m}_\text{P}^{-2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{m}_\text{P}^{-1}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}_\text{P}^{2}$ $\text{m}^{-1}\text{K}$

Molar

Unified PlanckGauss Metric
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\text{m}_\text{P}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}_\text{P}^{4}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}_\text{P}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{m}_\text{P}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{P}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{m}_\text{P}^{2}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}_\text{P}^{-3}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}_\text{P}^{2}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified PlanckGauss Metric
luminous flux $\text{J}$ $\text{m}_\text{P}^{2}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{m}_\text{P}^{2}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{m}_\text{P}^{4}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{m}_\text{P}^{4}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{m}_\text{P}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{m}_\text{P}^{3}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$