Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.911147(21) \times
10^{-43}$
$\left[\text{s}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
angular time |
$1.911147(21) \times
10^{-43}$
$\left[\text{s}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
length |
$5.729476(63) \times
10^{-35}$
$\left[\text{m}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
angular length |
$5.729476(63) \times
10^{-35}$
$\left[\text{m}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
area |
$3.282689(72) \times
10^{-69}$
$\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
angular area |
$3.282689(72) \times
10^{-69}$
$\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
volume |
$1.880809(62) \times
10^{-103}$
$\left[\text{m}^{3}\right]/\left[\text{M}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$ |
wavenumber |
$1.745360(19) \times
10^{34}$
$\left[\text{m}^{-1}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
angular wavenumber |
$1.745360(19) \times
10^{34}$
$\left[\text{m}^{-1}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
fuel efficiency |
$3.046283(67) \times
10^{68}$
$\left[\text{m}^{-2}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot
2^{-1}$ |
number density |
$5.31686(18) \times
10^{102}$
$\left[\text{m}^{-3}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$ |
frequency |
$5.232459(58) \times
10^{42}$
$\left[\text{Hz}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
angular frequency |
$5.232459(58) \times
10^{42}$
$\left[\text{Hz}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
frequency drift |
$2.737862(60) \times
10^{85}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{2}\tau\cdot
2^{-1}$ |
stagnance |
$3.3356409519815204
\times 10^{-9}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}$ |
speed |
$2.99792458 \times
10^{8}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}$ |
acceleration |
$1.568652(17) \times
10^{51}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
jerk |
$8.20791(18) \times
10^{93}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{2}\tau\cdot
2^{-1}$ |
snap |
$4.29475(14) \times
10^{136}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-3}\text{c}^{7}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$ |
crackle |
$2.247212(99) \times
10^{179}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-4}\text{c}^{9}\text{m}_\text{P}^{4}\tau^{2}2^{-2}$ |
pop |
$1.175844(65) \times
10^{222}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{M}^{5}\right]$ |
$\hbar^{-5}\text{c}^{11}\text{m}_\text{P}^{5}\tau^{5/2}2^{-5/2}$ |
volume flow |
$9.84125(22) \times
10^{-61}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{M}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
etendue |
$3.282689(72) \times
10^{-69}$
$\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
photon intensity |
$5.232459(58) \times
10^{42}$
$\left[\text{Hz}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
photon irradiance |
$5.821896(64) \times
10^{25}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
photon radiance |
$5.821896(64) \times
10^{25}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
Name |
Quantity |
Product |
inertia |
$6.139607(68) \times
10^{-9}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\text{m}_\text{P}\cdot
\tau^{-1/2}2^{-1/2}$ |
mass |
$6.139607(68) \times
10^{-9}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\text{m}_\text{P}\cdot
\tau^{-1/2}2^{-1/2}$ |
mass flow |
$3.212524(71) \times
10^{34}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}2^{-1}$ |
linear density |
$1.071583(24) \times
10^{26}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{m}_\text{P}^{2}2^{-1}$ |
area density |
$1.870298(62) \times
10^{60}$ $\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$ |
density |
$3.26434(14) \times
10^{94}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau\cdot
2^{-2}$ |
specific weight |
$5.12062(28) \times
10^{145}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}^{5}\right]$ |
$\hbar^{-4}\text{c}^{6}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$ |
specific volume |
$3.06340(14) \times
10^{-95}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$ |
force |
$9.63090(21) \times
10^{42}$
$\left[\text{N}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}2^{-1}$ |
specific force |
$1.568652(17) \times
10^{51}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$2.93385(13) \times
10^{111}$
$\left[\text{Pa}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau\cdot
2^{-2}$ |
compressibility |
$3.40850(15) \times
10^{-112}$
$\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$ |
viscosity |
$5.60701(19) \times
10^{68}$ $\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$ |
diffusivity |
$1.717654(19) \times
10^{-26}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
rotational inertia |
$2.015442(22) \times
10^{-77}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{1/2}$ |
impulse |
$1.840608(20)$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{M}\right]$ |
$\text{c}\cdot
\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$ |
momentum |
$1.840608(20)$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{M}\right]$ |
$\text{c}\cdot
\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$5.03933(17) \times
10^{85}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$ |
energy |
$5.518004(61) \times
10^{8}$
$\left[\text{J}\right]/\left[\text{M}\right]$ |
$\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{-1/2}2^{-1/2}$ |
specific energy |
$8.987551787368176
\times 10^{16}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$1.680940(56) \times
10^{77}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$ |
power |
$2.887273(64) \times
10^{51}$
$\left[\text{W}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}2^{-1}$ |
power density |
$1.535123(85) \times
10^{154}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{M}^{5}\right]$ |
$\hbar^{-4}\text{c}^{7}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$ |
irradiance |
$8.79545(39) \times
10^{119}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau\cdot
2^{-2}$ |
radiance |
$8.79545(39) \times
10^{119}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau\cdot
2^{-2}$ |
radiant intensity |
$2.887273(64) \times
10^{51}$
$\left[\text{W}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}2^{-1}$ |
spectral flux |
$5.03933(17) \times
10^{85}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$ |
spectral exposure |
$3.212524(71) \times
10^{34}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}2^{-1}$ |
sound exposure |
$1.64501(13) \times
10^{180}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{7}\right]$ |
$\hbar^{-5}\text{c}^{8}\text{m}_\text{P}^{7}\tau^{3/2}2^{-7/2}$ |
impedance |
$2.98117(20) \times
10^{171}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}^{6}\right]$ |
$\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{2}2^{-3}$ |
specific impedance |
$9.78626(43) \times
10^{102}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}^{4}\right]$ |
$\hbar^{-3}\text{c}^{4}\text{m}_\text{P}^{4}\tau\cdot
2^{-2}$ |
admittance |
$3.35439(22) \times
10^{-172}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-6}\right]$ |
$\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-2}2^{3}$ |
compliance |
$5.94905(20) \times
10^{-78}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{M}^{-3}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$ |
inertance |
$5.69746(31) \times
10^{128}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{M}^{5}\right]$ |
$\hbar^{-4}\text{c}^{4}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$ |
Name |
Quantity |
Product |
charge |
$5.29081768990(41)
\times 10^{-19}$
$\left[\text{C}\right]/\left[\mathbb{1}\right]$ |
$\text{e}\cdot
\alpha^{-1/2}\tau^{-1/2}2^{-1/2}$ |
charge density |
$2.813054(93) \times
10^{84}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{3}\tau\cdot
2^{-2}$ |
linear charge
density |
$9.23438(10) \times
10^{15}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$ |
exposure |
$8.617519(95) \times
10^{-11}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\right]$ |
$\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}$ |
mobility |
$17.9140907514(14)$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
current |
$2.768399(31) \times
10^{24}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$ |
current density |
$8.43332(28) \times
10^{92}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{M}^{3}\right]$ |
$\hbar^{-3}\text{c}^{4}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{3}\tau\cdot
2^{-2}$ |
resistance |
$376.730313667(58)$
$\left[\Omega\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot 2$ |
conductance |
$0.00265441872799(41)$
$\left[\text{S}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ |
resistivity |
$2.158467(24) \times
10^{-32}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$ |
conductivity |
$4.632917(51) \times
10^{31}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{M}\right]$ |
$\hbar^{-2}\text{c}\cdot
\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-3/2}$ |
capacitance |
$5.072985(56) \times
10^{-46}$
$\left[\text{F}\right]/\left[\text{M}^{-1}\right]$ |
$\text{c}^{-2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{-1/2}$ |
inductance |
$7.199872(79) \times
10^{-41}$
$\left[\text{H}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$ |
reluctance |
$1.388914(15) \times
10^{40}$
$\left[\text{H}^{-1}\right]/\left[\text{M}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-3/2}$ |
permeance |
$7.199872(79) \times
10^{-41}$
$\left[\text{H}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$ |
permittivity |
$8.8541878128(14)
\times 10^{-12}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ |
permeability |
$1.25663706212(19)
\times 10^{-6}$ $\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\alpha\cdot 2$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$3.06340(14) \times
10^{-95}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$3.478872(38) \times
10^{18}$ $\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{M}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$ |
electric potential |
$1.042940(12) \times
10^{27}$
$\left[\text{V}\right]/\left[\text{M}\right]$ |
$\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$ |
magnetic potential |
$2.768399(31) \times
10^{24}$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{M}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$ |
electric field |
$1.820306(40) \times
10^{61}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-1/2}$ |
magnetic field |
$4.83185(11) \times
10^{58}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}^{3}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$ |
electric flux |
$5.97549747279(46)
\times 10^{-8}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
magnetic flux |
$1.99321140787(15)
\times 10^{-16}$
$\left[\text{Wb}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
electric
displacement |
$1.611733(36) \times
10^{50}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$ |
magnetic flux
density |
$6.07189(13) \times
10^{52}$
$\left[\text{T}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-1/2}$ |
electric dipole
moment |
$3.031361(33) \times
10^{-53}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
magnetic dipole
moment |
$9.08779(10) \times
10^{-45}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar\cdot
\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
electric
polarizability |
$1.665304(55) \times
10^{-114}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-3}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{1/2}$ |
magnetic
polarizability |
$1.880809(62) \times
10^{-103}$
$\left[\text{m}^{3}\right]/\left[\text{M}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$ |
magnetic moment |
$1.142006(13) \times
10^{-50}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{M}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}2$ |
specific
magnetization |
$5.37616(12) \times
10^{41}$ $\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{M}^{2}\right]$ |
$\hbar^{-2}\text{c}\cdot \text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$ |
pole strength |
$1.58614724008(12)
\times 10^{-10}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\mathbb{1}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\alpha^{-1/2}\tau^{-1/2}2^{-1/2}$ |
Name |
Quantity |
Product |
temperature |
$3.996674(44) \times
10^{31}$
$\left[\text{K}\right]/\left[\text{M}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{-1/2}2^{-1/2}$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$2.248758(25) \times
10^{-15}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$ |
volume heat capacity |
$7.34072(24) \times
10^{79}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}^{3}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$ |
thermal conductivity |
$1.260881(28) \times
10^{54}$ $\left[\text{W} \cdot
\text{m}^{-1}
\text{K}^{-1}\right]/\left[\text{M}^{2}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{2}\tau\cdot
2^{-1}$ |
thermal conductance |
$7.224189(80) \times
10^{19}$ $\left[\text{W} \cdot
\text{K}^{-1}\right]/\left[\text{M}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{1/2}2^{-1/2}$ |
thermal resistivity |
$7.93096(17) \times
10^{-55}$ $\left[\text{K} \cdot \text{m}
\cdot
\text{W}^{-1}\right]/\left[\text{M}^{-2}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
thermal resistance |
$1.384238(15) \times
10^{-20}$ $\left[\text{K} \cdot
\text{W}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$ |
thermal expansion |
$2.502081(28) \times
10^{-32}$
$\left[\text{K}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$ |
lapse rate |
$6.97564(15) \times
10^{65}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{M}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}2^{-1}$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$6.139607(68) \times
10^{-6}$
$\left[\text{mol}\right]/\left[\text{M}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}\cdot \tau^{-1/2}2^{-3/2}$ |
molarity |
$3.26434(14) \times
10^{97}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}^{4}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{4}\tau\cdot 2^{-3}$ |
molar volume |
$3.06340(14) \times
10^{-98}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-4}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{3}$ |
molar entropy |
$2.248758(25) \times
10^{-18}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{mol}^{-1}\right]/\left[\text{M}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$ |
molar energy |
$8.9875517843(28)
\times 10^{13}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar conductivity |
$2.477101(55) \times
10^{-32}$ $\left[\text{S} \cdot \text{m}^2
\text{mol}^{-1}\right]/\left[\text{M}^{-2}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-2}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2$ |
molar susceptibility |
$3.06340(14) \times
10^{-98}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-4}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{3}$ |
catalysis |
$3.212524(71) \times
10^{37}$
$\left[\text{kat}\right]/\left[\text{M}^{2}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}2^{-2}$ |
specificity |
$1.602913(53) \times
10^{-55}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-3}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{3}\text{c}^{-2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{5/2}$ |
diffusion flux |
$3.574415(79) \times
10^{20}$ $\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{M}^{2}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}2^{-2}$ |
|
Unified |
Planck |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{M}^{-1}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{M}^{-1}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{M}^{-1}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{M}^{-1}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{M}^{-2}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{M}^{-2}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{M}^{-3}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{M}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{M}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{M}^{2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{M}^{3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{M}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{M}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{M}^{2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{M}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{M}^{2}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{M}^{3}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{M}^{4}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{M}^{5}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{M}^{-2}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{M}^{-2}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{M}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{M}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{M}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
Planck |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{M}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\text{M}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{M}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{M}^{2}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{M}^{3}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{M}^{4}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{M}^{5}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{M}^{2}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{M}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{M}^{4}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{M}^{-4}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{M}^{3}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{M}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{M}^{-1}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{M}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{M}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{M}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{M}^{3}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}^{2}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{M}^{5}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{M}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{M}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{M}^{2}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{M}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{M}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{M}^{7}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{M}^{6}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{M}^{4}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{M}^{-6}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{M}^{-3}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{M}^{5}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
Planck |
SI2019 |
charge |
$\text{Q}$ |
$\mathbb{1}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{M}^{3}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{M}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{M}^{-1}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\mathbb{1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{M}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{M}^{3}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\mathbb{1}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\mathbb{1}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{M}^{-1}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{M}^{-1}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{M}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}^{-1}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\mathbb{1}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\mathbb{1}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{M}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{M}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{M}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{M}^{2}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{M}^{2}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\mathbb{1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\mathbb{1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{M}^{2}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}^{2}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{M}^{-1}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{M}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{M}^{-3}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-3}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{M}^{2}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
Planck |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{M}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{M}^{4}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{M}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{M}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{M}^{-2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{M}^{2}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{M}^{-3}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{M}^{2}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |