Planck -> SI2019

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.911147(21) \times 10^{-43}$ $\left[\text{s}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
angular time $1.911147(21) \times 10^{-43}$ $\left[\text{s}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
length $5.729476(63) \times 10^{-35}$ $\left[\text{m}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
angular length $5.729476(63) \times 10^{-35}$ $\left[\text{m}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
area $3.282689(72) \times 10^{-69}$ $\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$
angular area $3.282689(72) \times 10^{-69}$ $\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$
volume $1.880809(62) \times 10^{-103}$ $\left[\text{m}^{3}\right]/\left[\text{M}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$
wavenumber $1.745360(19) \times 10^{34}$ $\left[\text{m}^{-1}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
angular wavenumber $1.745360(19) \times 10^{34}$ $\left[\text{m}^{-1}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
fuel efficiency $3.046283(67) \times 10^{68}$ $\left[\text{m}^{-2}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
number density $5.31686(18) \times 10^{102}$ $\left[\text{m}^{-3}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$
frequency $5.232459(58) \times 10^{42}$ $\left[\text{Hz}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
angular frequency $5.232459(58) \times 10^{42}$ $\left[\text{Hz}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
frequency drift $2.737862(60) \times 10^{85}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
stagnance $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}$
speed $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}$
acceleration $1.568652(17) \times 10^{51}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
jerk $8.20791(18) \times 10^{93}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
snap $4.29475(14) \times 10^{136}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-3}\text{c}^{7}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$
crackle $2.247212(99) \times 10^{179}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-4}\text{c}^{9}\text{m}_\text{P}^{4}\tau^{2}2^{-2}$
pop $1.175844(65) \times 10^{222}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{M}^{5}\right]$ $\hbar^{-5}\text{c}^{11}\text{m}_\text{P}^{5}\tau^{5/2}2^{-5/2}$
volume flow $9.84125(22) \times 10^{-61}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{M}^{-2}\right]$ $\hbar^{2}\text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$
etendue $3.282689(72) \times 10^{-69}$ $\left[\text{m}^{2}\right]/\left[\text{M}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$
photon intensity $5.232459(58) \times 10^{42}$ $\left[\text{Hz}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
photon irradiance $5.821896(64) \times 10^{25}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
photon radiance $5.821896(64) \times 10^{25}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$

Mechanical Ratios

Name Quantity Product
inertia $6.139607(68) \times 10^{-9}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
mass $6.139607(68) \times 10^{-9}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
mass flow $3.212524(71) \times 10^{34}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}2^{-1}$
linear density $1.071583(24) \times 10^{26}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}^{2}2^{-1}$
area density $1.870298(62) \times 10^{60}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
density $3.26434(14) \times 10^{94}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
specific weight $5.12062(28) \times 10^{145}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}^{5}\right]$ $\hbar^{-4}\text{c}^{6}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$
specific volume $3.06340(14) \times 10^{-95}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
force $9.63090(21) \times 10^{42}$ $\left[\text{N}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}2^{-1}$
specific force $1.568652(17) \times 10^{51}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{3}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $2.93385(13) \times 10^{111}$ $\left[\text{Pa}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
compressibility $3.40850(15) \times 10^{-112}$ $\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-4}\right]$ $\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
viscosity $5.60701(19) \times 10^{68}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
diffusivity $1.717654(19) \times 10^{-26}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
rotational inertia $2.015442(22) \times 10^{-77}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{M}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-3/2}2^{1/2}$
impulse $1.840608(20)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\right]$ $\text{c}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
momentum $1.840608(20)$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\right]$ $\text{c}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
yank $5.03933(17) \times 10^{85}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
energy $5.518004(61) \times 10^{8}$ $\left[\text{J}\right]/\left[\text{M}\right]$ $\text{c}^{2}\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
specific energy $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $1.680940(56) \times 10^{77}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
power $2.887273(64) \times 10^{51}$ $\left[\text{W}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}2^{-1}$
power density $1.535123(85) \times 10^{154}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{M}^{5}\right]$ $\hbar^{-4}\text{c}^{7}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$
irradiance $8.79545(39) \times 10^{119}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
radiance $8.79545(39) \times 10^{119}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
radiant intensity $2.887273(64) \times 10^{51}$ $\left[\text{W}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{m}_\text{P}^{2}2^{-1}$
spectral flux $5.03933(17) \times 10^{85}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{5}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
spectral exposure $3.212524(71) \times 10^{34}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}^{2}2^{-1}$
sound exposure $1.64501(13) \times 10^{180}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{7}\right]$ $\hbar^{-5}\text{c}^{8}\text{m}_\text{P}^{7}\tau^{3/2}2^{-7/2}$
impedance $2.98117(20) \times 10^{171}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}^{6}\right]$ $\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{2}2^{-3}$
specific impedance $9.78626(43) \times 10^{102}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{4}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
admittance $3.35439(22) \times 10^{-172}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-6}\right]$ $\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-2}2^{3}$
compliance $5.94905(20) \times 10^{-78}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{M}^{-3}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
inertance $5.69746(31) \times 10^{128}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{M}^{5}\right]$ $\hbar^{-4}\text{c}^{4}\text{m}_\text{P}^{5}\tau^{3/2}2^{-5/2}$

Electromagnetic Ratios

Name Quantity Product
charge $5.29081768990(41) \times 10^{-19}$ $\left[\text{C}\right]/\left[\mathbb{1}\right]$ $\text{e}\cdot \alpha^{-1/2}\tau^{-1/2}2^{-1/2}$
charge density $2.813054(93) \times 10^{84}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{3}\tau\cdot 2^{-2}$
linear charge density $9.23438(10) \times 10^{15}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$
exposure $8.617519(95) \times 10^{-11}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\right]$ $\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
mobility $17.9140907514(14)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$
current $2.768399(31) \times 10^{24}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$
current density $8.43332(28) \times 10^{92}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-3}\text{c}^{4}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{3}\tau\cdot 2^{-2}$
resistance $376.730313667(58)$ $\left[\Omega\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot 2$
conductance $0.00265441872799(41)$ $\left[\text{S}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$
resistivity $2.158467(24) \times 10^{-32}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{M}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$
conductivity $4.632917(51) \times 10^{31}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{M}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-3/2}$
capacitance $5.072985(56) \times 10^{-46}$ $\left[\text{F}\right]/\left[\text{M}^{-1}\right]$ $\text{c}^{-2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{-1/2}$
inductance $7.199872(79) \times 10^{-41}$ $\left[\text{H}\right]/\left[\text{M}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$
reluctance $1.388914(15) \times 10^{40}$ $\left[\text{H}^{-1}\right]/\left[\text{M}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-3/2}$
permeance $7.199872(79) \times 10^{-41}$ $\left[\text{H}\right]/\left[\text{M}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$
permittivity $8.8541878128(14) \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$
permeability $1.25663706212(19) \times 10^{-6}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha\cdot 2$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $3.06340(14) \times 10^{-95}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-4}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $3.478872(38) \times 10^{18}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{M}\right]$ $\text{c}\cdot \text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$
electric potential $1.042940(12) \times 10^{27}$ $\left[\text{V}\right]/\left[\text{M}\right]$ $\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$
magnetic potential $2.768399(31) \times 10^{24}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{M}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot 2^{-1}$
electric field $1.820306(40) \times 10^{61}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-1/2}$
magnetic field $4.83185(11) \times 10^{58}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}^{3}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$
electric flux $5.97549747279(46) \times 10^{-8}$ $\left[\text{V} \cdot \text{m}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$
magnetic flux $1.99321140787(15) \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$
electric displacement $1.611733(36) \times 10^{50}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$
magnetic flux density $6.07189(13) \times 10^{52}$ $\left[\text{T}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-1/2}$
electric dipole moment $3.031361(33) \times 10^{-53}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
magnetic dipole moment $9.08779(10) \times 10^{-45}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\hbar\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
electric polarizability $1.665304(55) \times 10^{-114}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-3}\right]$ $\hbar^{2}\text{c}^{-4}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{1/2}$
magnetic polarizability $1.880809(62) \times 10^{-103}$ $\left[\text{m}^{3}\right]/\left[\text{M}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$
magnetic moment $1.142006(13) \times 10^{-50}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{M}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}2$
specific magnetization $5.37616(12) \times 10^{41}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{2}\tau^{1/2}2^{-3/2}$
pole strength $1.58614724008(12) \times 10^{-10}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\mathbb{1}\right]$ $\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\tau^{-1/2}2^{-1/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $3.996674(44) \times 10^{31}$ $\left[\text{K}\right]/\left[\text{M}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
entropy $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}$
specific entropy $2.248758(25) \times 10^{-15}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
volume heat capacity $7.34072(24) \times 10^{79}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}^{3}\right]$ $\text{k}_\text{B}\cdot \hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$
thermal conductivity $1.260881(28) \times 10^{54}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{M}^{2}\right]$ $\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
thermal conductance $7.224189(80) \times 10^{19}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{M}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
thermal resistivity $7.93096(17) \times 10^{-55}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-2}\right]$ $\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}2$
thermal resistance $1.384238(15) \times 10^{-20}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
thermal expansion $2.502081(28) \times 10^{-32}$ $\left[\text{K}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
lapse rate $6.97564(15) \times 10^{65}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{M}^{2}\right]$ $\text{k}_\text{B}^{-1}\hbar^{-1}\text{c}^{3}\text{m}_\text{P}^{2}2^{-1}$

Molar Ratios

Name Quantity Product
molar mass $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molality $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar amount $6.139607(68) \times 10^{-6}$ $\left[\text{mol}\right]/\left[\text{M}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{-3/2}$
molarity $3.26434(14) \times 10^{97}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}^{4}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau\cdot 2^{-3}$
molar volume $3.06340(14) \times 10^{-98}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-4}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{3}$
molar entropy $2.248758(25) \times 10^{-18}$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{M}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$
molar energy $8.9875517843(28) \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar conductivity $2.477101(55) \times 10^{-32}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{M}^{-2}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-2}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2$
molar susceptibility $3.06340(14) \times 10^{-98}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-4}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{3}$
catalysis $3.212524(71) \times 10^{37}$ $\left[\text{kat}\right]/\left[\text{M}^{2}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}2^{-2}$
specificity $1.602913(53) \times 10^{-55}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-3}\right]$ $\text{N}_\text{A}\cdot \hbar^{3}\text{c}^{-2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{5/2}$
diffusion flux $3.574415(79) \times 10^{20}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{M}^{2}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-2}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}2^{-2}$

Photometric Ratios

Name Quantity Product
luminous flux $1.972064(43) \times 10^{54}$ $\left[\text{cd}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{2}2^{-1}$
luminous intensity $1.972064(43) \times 10^{54}$ $\left[\text{cd}\right]/\left[\text{M}^{2}\right]$ $\hbar^{-1}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{2}2^{-1}$
luminance $6.00746(26) \times 10^{122}$ $\left[\text{lx}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
illuminance $6.00746(26) \times 10^{122}$ $\left[\text{lx}\right]/\left[\text{M}^{4}\right]$ $\hbar^{-3}\text{c}^{6}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
luminous energy $3.768905(42) \times 10^{11}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{M}\right]$ $\text{c}^{2}\text{K}_\text{cd}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
luminous exposure $1.148115(38) \times 10^{80}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{M}^{3}\right]$ $\hbar^{-2}\text{c}^{4}\text{K}_\text{cd}\cdot \text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified Planck SI2019
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{M}^{-1}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{M}^{-1}$ $\text{s}$
length $\text{L}$ $\text{M}^{-1}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{M}^{-1}$ $\text{m}$
area $\text{L}^{2}$ $\text{M}^{-2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{M}^{-2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{M}^{-3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{M}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{M}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{M}^{2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{M}^{3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{M}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{M}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{M}^{2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{M}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{M}^{2}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{M}^{3}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{M}^{4}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{M}^{5}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{M}^{-2}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{M}^{-2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{M}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{M}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{M}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified Planck SI2019
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{M}$ $\text{kg}$
mass $\text{M}$ $\text{M}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{M}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{M}^{2}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{M}^{3}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{M}^{4}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{M}^{5}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{M}^{2}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{M}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{M}^{4}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{M}^{-4}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{M}^{3}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{M}^{-1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{M}^{-1}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{M}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{M}^{3}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{M}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\mathbb{1}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{M}^{3}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}^{2}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{M}^{5}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{M}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{M}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{M}^{2}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{M}^{3}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{M}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{M}^{7}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{M}^{6}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{M}^{4}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{M}^{-6}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{M}^{-3}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{M}^{5}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified Planck SI2019
charge $\text{Q}$ $\mathbb{1}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{M}^{3}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{M}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{M}^{-1}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\mathbb{1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{M}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{M}^{3}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\mathbb{1}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\mathbb{1}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{M}^{-1}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{M}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{M}^{-1}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{M}^{-1}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{M}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}^{-1}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\mathbb{1}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\mathbb{1}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{M}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{M}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{M}^{2}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{M}^{2}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\mathbb{1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\mathbb{1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{M}^{2}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}^{2}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{M}^{-1}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{M}^{-1}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{M}^{-3}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{M}^{2}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified Planck SI2019
temperature $\Theta$ $\text{M}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{M}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{M}^{3}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}^{2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{M}^{-1}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{M}^{2}$ $\text{m}^{-1}\text{K}$

Molar

Unified Planck SI2019
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\text{M}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{M}^{4}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{M}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{M}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{M}^{-2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{M}^{2}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{M}^{-3}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{M}^{2}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified Planck SI2019
luminous flux $\text{J}$ $\text{M}^{2}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{M}^{2}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{M}^{4}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{M}^{4}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{M}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{M}^{3}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$