QCDGauss -> Metric

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $7.0151501388(22) \times 10^{-25}$ $\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
angular time $7.0151501388(22) \times 10^{-25}$ $\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
length $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
angular length $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
area $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
angular area $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
volume $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
wavenumber $4.7549102813(15) \times 10^{15}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
angular wavenumber $4.7549102813(15) \times 10^{15}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
fuel efficiency $2.2609171783(14) \times 10^{31}$ $\left[\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
number density $1.0750458336(10) \times 10^{47}$ $\left[\text{m}^{-3}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$
frequency $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
angular frequency $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
frequency drift $2.0320110227(13) \times 10^{48}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
stagnance $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ $\text{c}^{-1}$
speed $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}$
acceleration $4.2735002397(13) \times 10^{32}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
jerk $6.0918157918(38) \times 10^{56}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$
snap $8.6837995927(81) \times 10^{80}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$
crackle $1.2378636837(15) \times 10^{105}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{4}2^{4}$
pop $1.7645576491(28) \times 10^{129}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{m}_\text{p}^{5}\right]$ $\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{5}2^{5}$
volume flow $1.32597717809(83) \times 10^{-23}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
etendue $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$
photon intensity $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
photon irradiance $1.58606734573(50) \times 10^{7}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
photon radiance $1.58606734573(50) \times 10^{7}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$

Mechanical Ratios

Name Quantity Product
inertia $1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
mass $1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
mass flow $0.0023842995383(15)$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
linear density $7.9531671817(50) \times 10^{-12}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
area density $37816.596401(35)$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
density $1.7981452303(22) \times 10^{20}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
specific weight $7.684374073(12) \times 10^{52}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{m}_\text{p}^{5}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$
specific volume $5.5612860582(69) \times 10^{-21}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
force $714795.01919(45)$ $\left[\text{N}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
specific force $4.2735002397(13) \times 10^{32}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $1.6160923379(20) \times 10^{37}$ $\left[\text{Pa}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
compressibility $6.1877652444(77) \times 10^{-38}$ $\left[\text{Pa}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
viscosity $1.1337130388(11) \times 10^{13}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
diffusivity $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$
rotational inertia $7.3979796329(23) \times 10^{-59}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$
impulse $5.0143943781(16) \times 10^{-19}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
momentum $5.0143943781(16) \times 10^{-19}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
yank $1.01893046485(95) \times 10^{30}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
energy $1.50327761599(47) \times 10^{-10}$ $\left[\text{J}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
specific energy $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $3.3987861858(32) \times 10^{21}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
power $2.1429015577(13) \times 10^{14}$ $\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
power density $2.3037173915(36) \times 10^{61}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{m}_\text{p}^{5}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$
irradiance $4.8449229432(61) \times 10^{45}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
radiance $4.8449229432(61) \times 10^{45}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
radiant intensity $2.1429015577(13) \times 10^{14}$ $\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
spectral flux $1.01893046485(95) \times 10^{30}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
spectral exposure $0.0023842995383(15)$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
sound exposure $1.8321849554(40) \times 10^{50}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{m}_\text{p}^{7}\right]$ $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-14}\mu_\text{eu}^{-7}\mu_\text{pu}^{7}\tau^{5}2^{7}$
impedance $1.2187934789(23) \times 10^{60}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{6}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$
specific impedance $5.3907037844(67) \times 10^{28}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
admittance $8.204835497(15) \times 10^{-61}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{m}_\text{p}^{-6}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$
compliance $2.9422268579(28) \times 10^{-22}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$
inertance $8.550019243(13) \times 10^{35}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{m}_\text{p}^{5}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$

Electromagnetic Ratios

Name Quantity Product
charge $1.8755460382902114 \times 10^{-18}$ $\left[\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\tau^{-1/2}2^{7/2}5^{7/2}$
charge density $2.0162979543(19) \times 10^{29}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{5/2}2^{13/2}5^{7/2}$
linear charge density $0.0089180531405(28)$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{9/2}5^{7/2}$
exposure $1.12132097022(35) \times 10^{9}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1/2}2^{5/2}5^{7/2}$
mobility $5.053471698958767$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{5/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
current $2.67356507157(84) \times 10^{6}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{9/2}5^{7/2}$
current density $6.0447091977(57) \times 10^{37}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{3}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{5/2}2^{13/2}5^{7/2}$
resistance $29.979245799999998$ $\left[\Omega\right]/\left[\text{e}_\text{n}^{-2}\right]$ $\text{c}\cdot 2^{-7}5^{-7}$
conductance $0.0333564095198152$ $\left[\text{S}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\text{c}^{-1}2^{7}5^{7}$
resistivity $6.3049025169(20) \times 10^{-15}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-8}5^{-7}$
conductivity $1.58606734573(50) \times 10^{14}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{8}5^{7}$
capacitance $2.34000220873(73) \times 10^{-26}$ $\left[\text{F}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{6}5^{7}$
inductance $2.10308910335(66) \times 10^{-23}$ $\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-8}5^{-7}$
reluctance $4.7549102813(15) \times 10^{22}$ $\left[\text{H}^{-1}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}\right]$ $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2^{8}5^{7}$
permeance $2.10308910335(66) \times 10^{-23}$ $\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-8}5^{-7}$
permittivity $1.1126500560536183 \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{2}\right]$ $\text{c}^{-2}2^{7}5^{7}$
permeability $1.0 \times 10^{-7}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{e}_\text{n}^{-2}\right]$ $2^{-7}5^{-7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $5.5612860582(69) \times 10^{-21}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $0.267356507157(84)$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{-5/2}5^{-7/2}$
electric potential $8.0151464443(25) \times 10^{7}$ $\left[\text{V}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{-5/2}5^{-7/2}$
magnetic potential $2.67356507157(84) \times 10^{6}$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot \text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{9/2}5^{7/2}$
electric field $3.8111302234(24) \times 10^{23}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{-3/2}5^{-7/2}$
magnetic field $1.27125620465(79) \times 10^{22}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{11/2}5^{7/2}$
electric flux $1.6856567148726493 \times 10^{-8}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
magnetic flux $5.622745569111847 \times 10^{-17}$ $\left[\text{Wb}\right]/\left[\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{-7/2}5^{-7/2}$
electric displacement $4.2404542567(26) \times 10^{13}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{11/2}5^{7/2}$
magnetic flux density $1.27125620465(79) \times 10^{15}$ $\left[\text{T}\right]/\left[\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{-3/2}5^{-7/2}$
electric dipole moment $3.9444404360(12) \times 10^{-34}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{5/2}5^{7/2}$
magnetic dipole moment $1.18251349373(37) \times 10^{-25}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{5/2}5^{7/2}$
electric polarizability $1.03497918065(97) \times 10^{-57}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{4}5^{7}$
magnetic polarizability $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$
magnetic moment $1.18251349373(37) \times 10^{-32}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{-9/2}5^{-7/2}$
specific magnetization $141446.328736(88)$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{-3/2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{11/2}5^{7/2}$
pole strength $5.622745569111847 \times 10^{-10}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{e}_\text{n}\right]$ $\hbar^{1/2}\text{c}^{1/2}\tau^{-1/2}2^{7/2}5^{7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $1.088819545377(57) \times 10^{13}$ $\left[\text{K}\right]/\left[\text{m}_\text{p}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\mu_\text{pu}\cdot 2^{-3}5^{-3}$
entropy $1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$
specific entropy $8254.39975387(43)$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{pu}^{-1}2^{3}5^{3}$
volume heat capacity $1.4842609546(18) \times 10^{24}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{3}\tau^{3}2^{7}5^{3}$
thermal conductivity $9.3581206287(87) \times 10^{16}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{2}\tau^{2}2^{6}5^{3}$
thermal conductance $19.680961522(12)$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{m}_\text{p}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}\cdot \tau\cdot 2^{5}5^{3}$
thermal resistivity $1.06859062806(99) \times 10^{-17}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-2}\tau^{-2}2^{-6}5^{-3}$
thermal resistance $0.050810525638(31)$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-1}\tau^{-1}2^{-5}5^{-3}$
thermal expansion $9.18425834883(48) \times 10^{-14}$ $\left[\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{pu}^{-1}2^{3}5^{3}$
lapse rate $5.1772392508(17) \times 10^{28}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}\tau\cdot 2^{-2}5^{-3}$

Molar Ratios

Name Quantity Product
molar mass $0.001$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $2^{-3}5^{-3}$
molality $1000.0$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $2^{3}5^{3}$
molar amount $1.67262192369(52) \times 10^{-24}$ $\left[\text{mol}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2^{4}5^{3}$
molarity $1.7981452303(22) \times 10^{23}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{7}5^{3}$
molar volume $5.5612860582(69) \times 10^{-24}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-7}5^{-3}$
molar entropy $8.25439975387(43)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{pu}^{-1}$
molar energy $8.987551787368177 \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{c}^{2}2^{-3}5^{-3}$
molar conductivity $4.1941039032(26) \times 10^{6}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-1}2^{2}5^{4}$
molar susceptibility $5.5612860582(69) \times 10^{-24}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-7}5^{-3}$
catalysis $2.3842995383(15)$ $\left[\text{kat}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{5}5^{3}$
specificity $7.9275367572(74)$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-6}5^{-3}$
diffusion flux $2.6528910149(17) \times 10^{-17}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{5}5^{3}$

Photometric Ratios

Name Quantity Product
luminous flux $1.46364395783(91) \times 10^{17}$ $\left[\text{cd}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
luminous intensity $1.46364395783(91) \times 10^{17}$ $\left[\text{cd}\right]/\left[\text{m}_\text{p}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$
luminance $3.3091777672(41) \times 10^{48}$ $\left[\text{lx}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
illuminance $3.3091777672(41) \times 10^{48}$ $\left[\text{lx}\right]/\left[\text{m}_\text{p}^{4}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$
luminous energy $1.02676821139(32) \times 10^{-7}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{m}_\text{p}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$
luminous exposure $2.3214378873(22) \times 10^{24}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{m}_\text{p}^{3}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified QCDGauss Metric
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{m}_\text{p}^{-1}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{s}$
length $\text{L}$ $\text{m}_\text{p}^{-1}$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{m}$
area $\text{L}^{2}$ $\text{m}_\text{p}^{-2}$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}_\text{p}^{-2}$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{m}_\text{p}^{-3}$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{m}_\text{p}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}_\text{p}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}_\text{p}^{2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{m}_\text{p}^{3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{m}_\text{p}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{m}_\text{p}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{m}_\text{p}^{2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\mathbb{1}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\mathbb{1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}_\text{p}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}_\text{p}^{2}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}_\text{p}^{3}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}_\text{p}^{4}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}_\text{p}^{5}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}_\text{p}^{-2}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}_\text{p}^{-2}$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{p}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{m}_\text{p}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{m}_\text{p}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified QCDGauss Metric
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{m}_\text{p}$ $\text{kg}$
mass $\text{M}$ $\text{m}_\text{p}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{m}_\text{p}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{m}_\text{p}^{2}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{m}_\text{p}^{3}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{m}_\text{p}^{4}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{m}_\text{p}^{5}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{m}_\text{p}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{m}_\text{p}^{2}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}_\text{p}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{m}_\text{p}^{4}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{m}_\text{p}^{-4}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{m}_\text{p}^{3}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{m}_\text{p}^{-1}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{m}_\text{p}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{m}_\text{p}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{m}_\text{p}^{3}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{m}_\text{p}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\mathbb{1}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\mathbb{1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{m}_\text{p}^{3}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{m}_\text{p}^{2}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{m}_\text{p}^{5}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{m}_\text{p}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{p}^{4}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{m}_\text{p}^{2}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{m}_\text{p}^{3}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{m}_\text{p}^{2}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{m}_\text{p}^{7}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{m}_\text{p}^{6}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{m}_\text{p}^{4}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{m}_\text{p}^{-6}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m}_\text{p}^{-3}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{m}_\text{p}^{5}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified QCDGauss Metric
charge $\text{Q}$ $\text{e}_\text{n}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}_\text{p}^{3}\text{e}_\text{n}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}_\text{p}^{3}\text{e}_\text{n}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{e}_\text{n}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{e}_\text{n}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{e}_\text{n}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{e}_\text{n}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{p}^{-4}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}_\text{p}\cdot \text{e}_\text{n}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{e}_\text{n}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{e}_\text{n}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{m}_\text{p}^{-3}\text{e}_\text{n}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{p}^{-3}$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{m}_\text{p}^{-1}\text{e}_\text{n}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}_\text{p}^{2}\text{e}_\text{n}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{e}_\text{n}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified QCDGauss Metric
temperature $\Theta$ $\text{m}_\text{p}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{m}_\text{p}^{3}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{m}_\text{p}^{2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{m}_\text{p}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{m}_\text{p}^{-2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{m}_\text{p}^{-1}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}_\text{p}^{2}$ $\text{m}^{-1}\text{K}$

Molar

Unified QCDGauss Metric
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\text{m}_\text{p}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}_\text{p}^{4}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}_\text{p}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{m}_\text{p}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{m}_\text{p}^{-2}\text{e}_\text{n}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}_\text{p}^{-4}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{m}_\text{p}^{2}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}_\text{p}^{-3}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}_\text{p}^{2}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified QCDGauss Metric
luminous flux $\text{J}$ $\text{m}_\text{p}^{2}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{m}_\text{p}^{2}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{m}_\text{p}^{4}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{m}_\text{p}^{4}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{m}_\text{p}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{m}_\text{p}^{3}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\mathbb{1}$ $\text{lm} \cdot \text{W}^{-1}$