QCD -> SI2019
data derived with UnitSystems.jl
Kinematic Ratios
Name | Quantity | Product |
---|---|---|
angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
solid angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
time | $7.0151501388(22) \times 10^{-25}$ $\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular time | $7.0151501388(22) \times 10^{-25}$ $\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
length | $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular length | $2.10308910335(66) \times 10^{-16}$ $\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
area | $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
angular area | $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
volume | $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
wavenumber | $4.7549102813(15) \times 10^{15}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
angular wavenumber | $4.7549102813(15) \times 10^{15}$ $\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
fuel efficiency | $2.2609171783(14) \times 10^{31}$ $\left[\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
number density | $1.0750458336(10) \times 10^{47}$ $\left[\text{m}^{-3}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
frequency | $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
angular frequency | $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
frequency drift | $2.0320110227(13) \times 10^{48}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
stagnance | $3.3356409519815204 \times 10^{-9}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ | $\text{c}^{-1}$ |
speed | $2.99792458 \times 10^{8}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{c}$ |
acceleration | $4.2735002397(13) \times 10^{32}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
jerk | $6.0918157918(38) \times 10^{56}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
snap | $8.6837995927(81) \times 10^{80}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
crackle | $1.2378636837(15) \times 10^{105}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{4}2^{4}$ |
pop | $1.7645576491(28) \times 10^{129}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{m}_\text{p}^{5}\right]$ | $\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{5}2^{5}$ |
volume flow | $1.32597717809(83) \times 10^{-23}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
etendue | $4.4229837766(28) \times 10^{-32}$ $\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
photon intensity | $1.42548624080(45) \times 10^{24}$ $\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
photon irradiance | $1.58606734573(50) \times 10^{7}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
photon radiance | $1.58606734573(50) \times 10^{7}$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
Mechanical Ratios
Name | Quantity | Product |
---|---|---|
inertia | $1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
mass | $1.67262192369(52) \times 10^{-27}$ $\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
mass flow | $0.0023842995383(15)$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
linear density | $7.9531671817(50) \times 10^{-12}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
area density | $37816.596401(35)$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
density | $1.7981452303(22) \times 10^{20}$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
specific weight | $7.684374073(12) \times 10^{52}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{m}_\text{p}^{5}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
specific volume | $5.5612860582(69) \times 10^{-21}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
force | $714795.01919(45)$ $\left[\text{N}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
specific force | $4.2735002397(13) \times 10^{32}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}^{2}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
gravity force | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
pressure | $1.6160923379(20) \times 10^{37}$ $\left[\text{Pa}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
compressibility | $6.1877652444(77) \times 10^{-38}$ $\left[\text{Pa}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
viscosity | $1.1337130388(11) \times 10^{13}$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
diffusivity | $6.3049025169(20) \times 10^{-8}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
rotational inertia | $7.3979796329(23) \times 10^{-59}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
impulse | $5.0143943781(16) \times 10^{-19}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
momentum | $5.0143943781(16) \times 10^{-19}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
angular momentum | $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \tau^{-1}$ |
yank | $1.01893046485(95) \times 10^{30}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
energy | $1.50327761599(47) \times 10^{-10}$ $\left[\text{J}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
specific energy | $8.987551787368176 \times 10^{16}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{c}^{2}$ |
action | $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \tau^{-1}$ |
fluence | $3.3987861858(32) \times 10^{21}$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
power | $2.1429015577(13) \times 10^{14}$ $\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
power density | $2.3037173915(36) \times 10^{61}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{m}_\text{p}^{5}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
irradiance | $4.8449229432(61) \times 10^{45}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
radiance | $4.8449229432(61) \times 10^{45}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
radiant intensity | $2.1429015577(13) \times 10^{14}$ $\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
spectral flux | $1.01893046485(95) \times 10^{30}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
spectral exposure | $0.0023842995383(15)$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
sound exposure | $1.8321849554(40) \times 10^{50}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{m}_\text{p}^{7}\right]$ | $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-14}\mu_\text{eu}^{-7}\mu_\text{pu}^{7}\tau^{5}2^{7}$ |
impedance | $1.2187934789(23) \times 10^{60}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{6}\right]$ | $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$ |
specific impedance | $5.3907037844(67) \times 10^{28}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
admittance | $8.204835497(15) \times 10^{-61}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{m}_\text{p}^{-6}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$ |
compliance | $2.9422268579(28) \times 10^{-22}$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
inertance | $8.550019243(13) \times 10^{35}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{m}_\text{p}^{5}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
Electromagnetic Ratios
Name | Quantity | Product |
---|---|---|
charge | $5.29081768990(41) \times 10^{-19}$ $\left[\text{C}\right]/\left[\mathbb{1}\right]$ | $\text{e}\cdot \alpha^{-1/2}\tau^{-1/2}2^{-1/2}$ |
charge density | $5.6878715140(58) \times 10^{28}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-13/2}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{5/2}2^{5/2}$ |
linear charge density | $0.00251573634301(98)$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\right]$ | $\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{1/2}$ |
exposure | $3.16318805520(75) \times 10^{8}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1/2}2^{-3/2}$ |
mobility | $17.9140907514(14)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{c}^{2}\text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
current | $754198.78195(29)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{1/2}$ |
current density | $1.7051809820(17) \times 10^{37}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{3}\alpha^{-13/2}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{5/2}2^{5/2}$ |
resistance | $376.730313667(58)$ $\left[\Omega\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{e}^{-2}\alpha\cdot 2$ |
conductance | $0.00265441872799(41)$ $\left[\text{S}\right]/\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ |
resistivity | $7.9229741758(37) \times 10^{-14}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}$ |
conductivity | $1.26215229006(59) \times 10^{13}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau$ |
capacitance | $1.86211459081(31) \times 10^{-27}$ $\left[\text{F}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot \mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-2}$ |
inductance | $2.6428197122(12) \times 10^{-22}$ $\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}$ |
reluctance | $3.7838373741(18) \times 10^{21}$ $\left[\text{H}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau$ |
permeance | $2.6428197122(12) \times 10^{-22}$ $\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}$ |
permittivity | $8.8541878128(14) \times 10^{-12}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ |
permeability | $1.25663706212(19) \times 10^{-6}$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\alpha\cdot 2$ |
susceptibility | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
specific susceptibility | $5.5612860582(69) \times 10^{-21}$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
demagnetizing factor | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
vector potential | $0.94775414161(23)$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{3/2}$ |
electric potential | $2.84129543692(68) \times 10^{8}$ $\left[\text{V}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{3/2}$ |
magnetic potential | $754198.78195(29)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau^{1/2}2^{1/2}$ |
electric field | $1.35101048852(74) \times 10^{24}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{5/2}$ |
magnetic field | $3.5861475424(25) \times 10^{21}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{3/2}$ |
electric flux | $5.97549747279(46) \times 10^{-8}$ $\left[\text{V} \cdot \text{m}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
magnetic flux | $1.99321140787(15) \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\mathbb{1}\right]$ | $\hbar\cdot \text{e}^{-1}\alpha^{1/2}\tau^{-1/2}2^{1/2}$ |
electric displacement | $1.19621006024(84) \times 10^{13}$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{3/2}$ |
magnetic flux density | $4.5064859121(25) \times 10^{15}$ $\left[\text{T}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-7/2}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{5/2}$ |
electric dipole moment | $1.11270610314(26) \times 10^{-34}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{-3/2}$ |
magnetic dipole moment | $3.33580897693(79) \times 10^{-26}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{c}\cdot \text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{-3/2}$ |
electric polarizability | $8.2361026254(65) \times 10^{-59}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{m}_\text{p}^{-3}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{5}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-4}$ |
magnetic polarizability | $9.3019289849(87) \times 10^{-48}$ $\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
magnetic moment | $4.1919011926(16) \times 10^{-32}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\hbar\cdot \text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-3/2}2^{-1/2}$ |
specific magnetization | $39901.272641(28)$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{2}\alpha^{-9/2}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{3/2}2^{3/2}$ |
pole strength | $1.58614724008(12) \times 10^{-10}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\mathbb{1}\right]$ | $\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\tau^{-1/2}2^{-1/2}$ |
Thermodynamic Ratios
Name | Quantity | Product |
---|---|---|
temperature | $1.08881954500(34) \times 10^{13}$ $\left[\text{K}\right]/\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
entropy | $1.380649 \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{k}_\text{B}$ |
specific entropy | $8254.3997567(26)$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
volume heat capacity | $1.4842609552(14) \times 10^{24}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\text{k}_\text{B}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
thermal conductivity | $9.3581206319(58) \times 10^{16}$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
thermal conductance | $19.6809615287(61)$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{m}_\text{p}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot \tau\cdot 2$ |
thermal resistivity | $1.06859062769(67) \times 10^{-17}$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
thermal resistance | $0.050810525621(16)$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
thermal expansion | $9.1842583520(29) \times 10^{-14}$ $\left[\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \mu_\text{pu}^{-1}2^{-1}$ |
lapse rate | $5.1772392490(32) \times 10^{28}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
Molar Ratios
Name | Quantity | Product |
---|---|---|
molar mass | $0.00099999999966(31)$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality | $1000.000000340000000(31)$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molar amount | $1.672621924269(88) \times 10^{-24}$ $\left[\text{mol}\right]/\left[\text{m}_\text{p}\right]$ | $\text{N}_\text{A}^{-1}\mu_\text{pu}$ |
molarity | $1.7981452309(17) \times 10^{23}$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
molar volume | $5.5612860563(53) \times 10^{-24}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
molar entropy | $8.25439975387(43)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{pu}^{-1}$ |
molar energy | $8.9875517843(28) \times 10^{13}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar conductivity | $333756.183724(63)$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ | $\text{N}_\text{A}\cdot \hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot \mu_\text{eu}\cdot \mu_\text{pu}^{-2}\tau^{-1}2^{-2}$ |
molar susceptibility | $5.5612860563(53) \times 10^{-24}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
catalysis | $2.38429953910(78)$ $\left[\text{kat}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{N}_\text{A}^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}\tau\cdot 2$ |
specificity | $7.9275367544(50)$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ | $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-3}\tau^{-2}2^{-2}$ |
diffusion flux | $2.65289101583(86) \times 10^{-17}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}\tau\cdot 2$ |
Photometric Ratios
Name | Quantity | Product |
---|---|---|
luminous flux | $1.46364395783(91) \times 10^{17}$ $\left[\text{cd}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
luminous intensity | $1.46364395783(91) \times 10^{17}$ $\left[\text{cd}\right]/\left[\text{m}_\text{p}^{2}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot 2^{2}$ |
luminance | $3.3091777672(41) \times 10^{48}$ $\left[\text{lx}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
illuminance | $3.3091777672(41) \times 10^{48}$ $\left[\text{lx}\right]/\left[\text{m}_\text{p}^{4}\right]$ | $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
luminous energy | $1.02676821139(32) \times 10^{-7}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{m}_\text{p}\right]$ | $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot 2$ |
luminous exposure | $2.3214378873(22) \times 10^{24}$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{m}_\text{p}^{3}\right]$ | $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
luminous efficacy | $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\mathbb{1}\right]$ | $\text{K}_\text{cd}$ |
Kinematic
Unified | QCD | SI2019 | |
---|---|---|---|
angle | $\text{A}$ | $\mathbb{1}$ | $\mathbb{1}$ |
solid angle | $\text{A}^{2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
time | $\text{T}$ | $\text{m}_\text{p}^{-1}$ | $\text{s}$ |
angular time | $\text{T}\cdot \text{A}^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{s}$ |
length | $\text{L}$ | $\text{m}_\text{p}^{-1}$ | $\text{m}$ |
angular length | $\text{L}\cdot \text{A}^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{m}$ |
area | $\text{L}^{2}$ | $\text{m}_\text{p}^{-2}$ | $\text{m}^{2}$ |
angular area | $\text{L}^{2}\text{A}^{-2}$ | $\text{m}_\text{p}^{-2}$ | $\text{m}^{2}$ |
volume | $\text{L}^{3}$ | $\text{m}_\text{p}^{-3}$ | $\text{m}^{3}$ |
wavenumber | $\text{L}^{-1}$ | $\text{m}_\text{p}$ | $\text{m}^{-1}$ |
angular wavenumber | $\text{L}^{-1}\text{A}$ | $\text{m}_\text{p}$ | $\text{m}^{-1}$ |
fuel efficiency | $\text{L}^{-2}$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-2}$ |
number density | $\text{L}^{-3}$ | $\text{m}_\text{p}^{3}$ | $\text{m}^{-3}$ |
frequency | $\text{T}^{-1}$ | $\text{m}_\text{p}$ | $\text{Hz}$ |
angular frequency | $\text{T}^{-1}\text{A}$ | $\text{m}_\text{p}$ | $\text{Hz}$ |
frequency drift | $\text{T}^{-2}$ | $\text{m}_\text{p}^{2}$ | $\text{Hz} \cdot \text{s}^{-1}$ |
stagnance | $\text{L}^{-1}\text{T}$ | $\mathbb{1}$ | $\text{m}^{-1}\text{s}$ |
speed | $\text{L}\cdot \text{T}^{-1}$ | $\mathbb{1}$ | $\text{m}\cdot \text{s}^{-1}$ |
acceleration | $\text{L}\cdot \text{T}^{-2}$ | $\text{m}_\text{p}$ | $\text{m}\cdot \text{s}^{-2}$ |
jerk | $\text{L}\cdot \text{T}^{-3}$ | $\text{m}_\text{p}^{2}$ | $\text{m}\cdot \text{s}^{-3}$ |
snap | $\text{L}\cdot \text{T}^{-4}$ | $\text{m}_\text{p}^{3}$ | $\text{m}\cdot \text{s}^{-4}$ |
crackle | $\text{L}\cdot \text{T}^{-5}$ | $\text{m}_\text{p}^{4}$ | $\text{m}\cdot \text{s}^{-5}$ |
pop | $\text{L}\cdot \text{T}^{-6}$ | $\text{m}_\text{p}^{5}$ | $\text{m}\cdot \text{s}^{-6}$ |
volume flow | $\text{L}^{3}\text{T}^{-1}$ | $\text{m}_\text{p}^{-2}$ | $\text{m}^{3}\text{s}^{-1}$ |
etendue | $\text{L}^{2}\text{A}^{2}$ | $\text{m}_\text{p}^{-2}$ | $\text{m}^{2}$ |
photon intensity | $\text{T}^{-1}\text{A}^{-2}$ | $\text{m}_\text{p}$ | $\text{Hz}$ |
photon irradiance | $\text{L}^{-2}\text{T}$ | $\text{m}_\text{p}$ | $\text{Hz} \cdot \text{m}^{-2}$ |
photon radiance | $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ | $\text{m}_\text{p}$ | $\text{Hz} \cdot \text{m}^{-2}$ |
Mechanical
Unified | QCD | SI2019 | |
---|---|---|---|
inertia | $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ | $\text{m}_\text{p}$ | $\text{kg}$ |
mass | $\text{M}$ | $\text{m}_\text{p}$ | $\text{kg}$ |
mass flow | $\text{M}\cdot \text{T}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density | $\text{M}\cdot \text{L}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{kg}\cdot \text{m}^{-1}$ |
area density | $\text{M}\cdot \text{L}^{-2}$ | $\text{m}_\text{p}^{3}$ | $\text{kg}\cdot \text{m}^{-2}$ |
density | $\text{M}\cdot \text{L}^{-3}$ | $\text{m}_\text{p}^{4}$ | $\text{kg}\cdot \text{m}^{-3}$ |
specific weight | $\text{F}\cdot \text{L}^{-3}$ | $\text{m}_\text{p}^{5}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ |
specific volume | $\text{M}^{-1}\text{L}^{3}$ | $\text{m}_\text{p}^{-4}$ | $\text{kg}^{-1}\text{m}^{3}$ |
force | $\text{F}$ | $\text{m}_\text{p}^{2}$ | $\text{N}$ |
specific force | $\text{F}\cdot \text{M}^{-1}$ | $\text{m}_\text{p}$ | $\text{m}\cdot \text{s}^{-2}$ |
gravity force | $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
pressure | $\text{F}\cdot \text{L}^{-2}$ | $\text{m}_\text{p}^{4}$ | $\text{Pa}$ |
compressibility | $\text{F}^{-1}\text{L}^{2}$ | $\text{m}_\text{p}^{-4}$ | $\text{Pa}^{-1}$ |
viscosity | $\text{F}\cdot \text{L}^{-2}\text{T}$ | $\text{m}_\text{p}^{3}$ | $\text{Pa} \cdot \text{s}$ |
diffusivity | $\text{L}^{2}\text{T}^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{m}^{2}\text{s}^{-1}$ |
rotational inertia | $\text{M}\cdot \text{L}^{2}$ | $\text{m}_\text{p}^{-1}$ | $\text{kg}\cdot \text{m}^{2}$ |
impulse | $\text{F}\cdot \text{T}$ | $\text{m}_\text{p}$ | $\text{N} \cdot \text{s}$ |
momentum | $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{m}_\text{p}$ | $\text{N} \cdot \text{s}$ |
angular momentum | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{s}$ |
yank | $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ | $\text{m}_\text{p}^{3}$ | $\text{N} \cdot \text{s}^{-1}$ |
energy | $\text{F}\cdot \text{L}$ | $\text{m}_\text{p}$ | $\text{J}$ |
specific energy | $\text{F}\cdot \text{M}^{-1}\text{L}$ | $\mathbb{1}$ | $\text{J} \cdot \text{kg}^{-1}$ |
action | $\text{F}\cdot \text{L}\cdot \text{T}$ | $\mathbb{1}$ | $\text{J} \cdot \text{s}$ |
fluence | $\text{F}\cdot \text{L}^{-1}$ | $\text{m}_\text{p}^{3}$ | $\text{N} \cdot \text{m}^{-1}$ |
power | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{W}$ |
power density | $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ | $\text{m}_\text{p}^{5}$ | $\text{W} \cdot \text{m}^{-3}$ |
irradiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ | $\text{m}_\text{p}^{4}$ | $\text{W} \cdot \text{m}^{-2}$ |
radiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ | $\text{m}_\text{p}^{4}$ | $\text{W} \cdot \text{m}^{-2}$ |
radiant intensity | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ | $\text{m}_\text{p}^{2}$ | $\text{W}$ |
spectral flux | $\text{F}\cdot \text{T}^{-1}$ | $\text{m}_\text{p}^{3}$ | $\text{N} \cdot \text{s}^{-1}$ |
spectral exposure | $\text{F}\cdot \text{L}^{-1}\text{T}$ | $\text{m}_\text{p}^{2}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure | $\text{F}^{2}\text{L}^{-4}\text{T}$ | $\text{m}_\text{p}^{7}$ | $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance | $\text{F}\cdot \text{L}^{-5}\text{T}$ | $\text{m}_\text{p}^{6}$ | $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ |
specific impedance | $\text{F}\cdot \text{L}^{-3}\text{T}$ | $\text{m}_\text{p}^{4}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ |
admittance | $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ | $\text{m}_\text{p}^{-6}$ | $\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance | $\text{M}^{-1}\text{T}^{2}$ | $\text{m}_\text{p}^{-3}$ | $\text{m} \cdot \text{N}^{-1}$ |
inertance | $\text{M}\cdot \text{L}^{-4}$ | $\text{m}_\text{p}^{5}$ | $\text{kg}\cdot \text{m}^{-4}$ |
Electromagnetic
Unified | QCD | SI2019 | |
---|---|---|---|
charge | $\text{Q}$ | $\mathbb{1}$ | $\text{C}$ |
charge density | $\text{L}^{-3}\text{Q}$ | $\text{m}_\text{p}^{3}$ | $\text{m}^{-3}\text{C}$ |
linear charge density | $\text{L}^{-1}\text{Q}$ | $\text{m}_\text{p}$ | $\text{m}^{-1}\text{C}$ |
exposure | $\text{M}^{-1}\text{Q}$ | $\text{m}_\text{p}^{-1}$ | $\text{kg}^{-1}\text{C}$ |
mobility | $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ | $\mathbb{1}$ | $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ |
current | $\text{T}^{-1}\text{Q}$ | $\text{m}_\text{p}$ | $\text{s}^{-1}\text{C}$ |
current density | $\text{L}^{-2}\text{T}^{-1}\text{Q}$ | $\text{m}_\text{p}^{3}$ | $\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ | $\mathbb{1}$ | $\Omega$ |
conductance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ | $\mathbb{1}$ | $\text{S}$ |
resistivity | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ | $\text{m}_\text{p}^{-1}$ | $\Omega \cdot \text{m}$ |
conductivity | $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ | $\text{m}_\text{p}$ | $\text{S} \cdot \text{m}^{-1}$ |
capacitance | $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ | $\text{m}_\text{p}^{-1}$ | $\text{F}$ |
inductance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ | $\text{m}_\text{p}^{-1}$ | $\text{H}$ |
reluctance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ | $\text{m}_\text{p}$ | $\text{H}^{-1}$ |
permeance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{m}_\text{p}^{-1}$ | $\text{H}$ |
permittivity | $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ | $\mathbb{1}$ | $\text{F} \cdot \text{m}^{-1}$ |
permeability | $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\mathbb{1}$ | $\text{H} \cdot \text{m}^{-1}$ |
susceptibility | $\text{R}^{-1}$ | $\mathbb{1}$ | $\mathbb{1}$ |
specific susceptibility | $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}_\text{p}^{-4}$ | $\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor | $\text{R}$ | $\mathbb{1}$ | $\mathbb{1}$ |
vector potential | $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{m}_\text{p}$ | $\text{Wb} \cdot \text{m}^{-1}$ |
electric potential | $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ | $\text{m}_\text{p}$ | $\text{V}$ |
magnetic potential | $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{m}_\text{p}$ | $\text{s}^{-1}\text{C}$ |
electric field | $\text{F}\cdot \text{Q}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{V} \cdot \text{m}^{-1}$ |
magnetic field | $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux | $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ | $\mathbb{1}$ | $\text{V} \cdot \text{m}$ |
magnetic flux | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\mathbb{1}$ | $\text{Wb}$ |
electric displacement | $\text{L}^{-2}\text{Q}\cdot \text{R}$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-2}\text{C}$ |
magnetic flux density | $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{m}_\text{p}^{2}$ | $\text{T}$ |
electric dipole moment | $\text{L}\cdot \text{Q}$ | $\text{m}_\text{p}^{-1}$ | $\text{m}\cdot \text{C}$ |
magnetic dipole moment | $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{J} \cdot \text{T}^{-1}$ |
electric polarizability | $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ | $\text{m}_\text{p}^{-3}$ | $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic polarizability | $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}_\text{p}^{-3}$ | $\text{m}^{3}$ |
magnetic moment | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{m}_\text{p}^{-1}$ | $\text{Wb} \cdot \text{m}$ |
specific magnetization | $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength | $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\mathbb{1}$ | $\text{m}\cdot \text{s}^{-1}\text{C}$ |
Thermodynamic
Unified | QCD | SI2019 | |
---|---|---|---|
temperature | $\Theta$ | $\text{m}_\text{p}$ | $\text{K}$ |
entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{K}^{-1}$ |
specific entropy | $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ |
volume heat capacity | $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ | $\text{m}_\text{p}^{3}$ | $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
thermal conductivity | $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{m}_\text{p}^{2}$ | $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ |
thermal conductance | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{m}_\text{p}$ | $\text{W} \cdot \text{K}^{-1}$ |
thermal resistivity | $\text{F}^{-1}\text{T}\cdot \Theta$ | $\text{m}_\text{p}^{-2}$ | $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ |
thermal resistance | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ | $\text{m}_\text{p}^{-1}$ | $\text{K} \cdot \text{W}^{-1}$ |
thermal expansion | $\Theta^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{K}^{-1}$ |
lapse rate | $\text{L}^{-1}\Theta$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-1}\text{K}$ |
Molar
Unified | QCD | SI2019 | |
---|---|---|---|
molar mass | $\text{M}\cdot \text{N}^{-1}$ | $\mathbb{1}$ | $\text{kg}\cdot \text{mol}^{-1}$ |
molality | $\text{M}^{-1}\text{N}$ | $\mathbb{1}$ | $\text{kg}^{-1}\text{mol}$ |
molar amount | $\text{N}$ | $\text{m}_\text{p}$ | $\text{mol}$ |
molarity | $\text{L}^{-3}\text{N}$ | $\text{m}_\text{p}^{4}$ | $\text{m}^{-3}\text{mol}$ |
molar volume | $\text{L}^{3}\text{N}^{-1}$ | $\text{m}_\text{p}^{-4}$ | $\text{m}^{3}\text{mol}^{-1}$ |
molar entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ | $\text{m}_\text{p}^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ |
molar energy | $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ | $\mathbb{1}$ | $\text{J} \cdot \text{mol}^{-1}$ |
molar conductivity | $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ | $\text{m}_\text{p}^{-2}$ | $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ |
molar susceptibility | $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}_\text{p}^{-4}$ | $\text{m}^{3}\text{mol}^{-1}$ |
catalysis | $\text{T}^{-1}\text{N}$ | $\text{m}_\text{p}^{2}$ | $\text{kat}$ |
specificity | $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ | $\text{m}_\text{p}^{-3}$ | $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux | $\text{L}^{-2}\text{T}\cdot \text{N}$ | $\text{m}_\text{p}^{2}$ | $\text{m}^{-2}\text{s}\cdot \text{mol}$ |
Photometric
Unified | QCD | SI2019 | |
---|---|---|---|
luminous flux | $\text{J}$ | $\text{m}_\text{p}^{2}$ | $\text{cd}$ |
luminous intensity | $\text{J}\cdot \text{A}^{-2}$ | $\text{m}_\text{p}^{2}$ | $\text{cd}$ |
luminance | $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ | $\text{m}_\text{p}^{4}$ | $\text{lx}$ |
illuminance | $\text{L}^{-2}\text{J}$ | $\text{m}_\text{p}^{4}$ | $\text{lx}$ |
luminous energy | $\text{T}\cdot \text{J}$ | $\text{m}_\text{p}$ | $\text{s}\cdot \text{lm}$ |
luminous exposure | $\text{L}^{-2}\text{T}\cdot \text{J}$ | $\text{m}_\text{p}^{3}$ | $\text{lx} \cdot \text{s}$ |
luminous efficacy | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ | $\mathbb{1}$ | $\text{lm} \cdot \text{W}^{-1}$ |