Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$7.0151501388(22)
\times 10^{-25}$
$\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular time |
$7.0151501388(22)
\times 10^{-25}$
$\left[\text{s}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
length |
$2.10308910335(66)
\times 10^{-16}$
$\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
angular length |
$2.10308910335(66)
\times 10^{-16}$
$\left[\text{m}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
area |
$4.4229837766(28)
\times 10^{-32}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
angular area |
$4.4229837766(28)
\times 10^{-32}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
volume |
$9.3019289849(87)
\times 10^{-48}$
$\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
wavenumber |
$4.7549102813(15)
\times 10^{15}$
$\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
angular wavenumber |
$4.7549102813(15)
\times 10^{15}$
$\left[\text{m}^{-1}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
fuel efficiency |
$2.2609171783(14)
\times 10^{31}$
$\left[\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
number density |
$1.0750458336(10)
\times 10^{47}$
$\left[\text{m}^{-3}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
frequency |
$1.42548624080(45)
\times 10^{24}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
angular frequency |
$1.42548624080(45)
\times 10^{24}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
frequency drift |
$2.0320110227(13)
\times 10^{48}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
stagnance |
$3.3356409519815204
\times 10^{-9}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{-1}$ |
speed |
$2.99792458 \times
10^{8}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}$ |
acceleration |
$4.2735002397(13)
\times 10^{32}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
jerk |
$6.0918157918(38)
\times 10^{56}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{c}^{3}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
snap |
$8.6837995927(81)
\times 10^{80}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\text{c}^{4}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
crackle |
$1.2378636837(15)
\times 10^{105}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\text{c}^{5}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{4}2^{4}$ |
pop |
$1.7645576491(28)
\times 10^{129}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{m}_\text{p}^{5}\right]$ |
$\text{c}^{6}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{5}2^{5}$ |
volume flow |
$1.32597717809(83)
\times 10^{-23}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
etendue |
$4.4229837766(28)
\times 10^{-32}$
$\left[\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
photon intensity |
$1.42548624080(45)
\times 10^{24}$
$\left[\text{Hz}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
photon irradiance |
$1.58606734573(50)
\times 10^{7}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
photon radiance |
$1.58606734573(50)
\times 10^{7}$ $\left[\text{Hz} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
Name |
Quantity |
Product |
inertia |
$1.67262192369(52)
\times 10^{-27}$
$\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
mass |
$1.67262192369(52)
\times 10^{-27}$
$\left[\text{kg}\right]/\left[\text{m}_\text{p}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
mass flow |
$0.0023842995383(15)$
$\left[\text{J} \cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
linear density |
$7.9531671817(50)
\times 10^{-12}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
area density |
$37816.596401(35)$
$\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
density |
$1.7981452303(22)
\times 10^{20}$ $\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
specific weight |
$7.684374073(12)
\times 10^{52}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{m}_\text{p}^{5}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
specific volume |
$5.5612860582(69)
\times 10^{-21}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
force |
$714795.01919(45)$
$\left[\text{N}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
specific force |
$4.2735002397(13)
\times 10^{32}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$1.6160923379(20)
\times 10^{37}$
$\left[\text{Pa}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
compressibility |
$6.1877652444(77)
\times 10^{-38}$
$\left[\text{Pa}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
viscosity |
$1.1337130388(11)
\times 10^{13}$ $\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
diffusivity |
$6.3049025169(20)
\times 10^{-8}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
rotational inertia |
$7.3979796329(23)
\times 10^{-59}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
impulse |
$5.0143943781(16)
\times 10^{-19}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{m}_\text{p}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
momentum |
$5.0143943781(16)
\times 10^{-19}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{m}_\text{p}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$1.01893046485(95)
\times 10^{30}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
energy |
$1.50327761599(47)
\times 10^{-10}$
$\left[\text{J}\right]/\left[\text{m}_\text{p}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
specific energy |
$8.987551787368176
\times 10^{16}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{c}^{2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\mathbb{1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$3.3987861858(32)
\times 10^{21}$ $\left[\text{N} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
power |
$2.1429015577(13)
\times 10^{14}$
$\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
power density |
$2.3037173915(36)
\times 10^{61}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{m}_\text{p}^{5}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
irradiance |
$4.8449229432(61)
\times 10^{45}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
radiance |
$4.8449229432(61)
\times 10^{45}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
radiant intensity |
$2.1429015577(13)
\times 10^{14}$
$\left[\text{W}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
spectral flux |
$1.01893046485(95)
\times 10^{30}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{2}2^{3}$ |
spectral exposure |
$0.0023842995383(15)$
$\left[\text{J} \cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
sound exposure |
$1.8321849554(40)
\times 10^{50}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{m}_\text{p}^{7}\right]$ |
$\hbar^{2}\text{c}\cdot
\text{R}_{\infty}^{7}\alpha^{-14}\mu_\text{eu}^{-7}\mu_\text{pu}^{7}\tau^{5}2^{7}$ |
impedance |
$1.2187934789(23)
\times 10^{60}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{6}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-12}\mu_\text{eu}^{-6}\mu_\text{pu}^{6}\tau^{5}2^{6}$ |
specific impedance |
$5.3907037844(67)
\times 10^{28}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\mu_\text{eu}^{-4}\mu_\text{pu}^{4}\tau^{3}2^{4}$ |
admittance |
$8.204835497(15)
\times 10^{-61}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{m}_\text{p}^{-6}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\mu_\text{eu}^{6}\mu_\text{pu}^{-6}\tau^{-5}2^{-6}$ |
compliance |
$2.9422268579(28)
\times 10^{-22}$ $\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
inertance |
$8.550019243(13)
\times 10^{35}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{m}_\text{p}^{5}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-10}\mu_\text{eu}^{-5}\mu_\text{pu}^{5}\tau^{4}2^{5}$ |
Name |
Quantity |
Product |
charge |
$1.602176634 \times
10^{-19}$
$\left[\text{C}\right]/\left[\text{e}\right]$ |
$\text{e}$ |
charge density |
$1.7224133151(16)
\times 10^{28}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{m}_\text{p}^{3}\text{e}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
linear charge
density |
$0.00076182061495(24)$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot
\text{e}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
exposure |
$9.5788331559(30)
\times 10^{7}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{-1}\text{e}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
mobility |
$59.15714050161226$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\tau^{-1}$ |
current |
$228388.074710(71)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot
\text{e}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
current density |
$5.1636652143(48)
\times 10^{36}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{3}\text{e}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
resistance |
$4108.2359022276605$
$\left[\Omega\right]/\left[\text{e}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\tau^{-1}$ |
conductance |
$0.00024341348057879472$
$\left[\text{S}\right]/\left[\text{e}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\tau$ |
resistivity |
$8.6399861600(27)
\times 10^{-13}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
conductivity |
$1.15740926141(36)
\times 10^{12}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{p}\cdot
\text{e}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
capacitance |
$1.70758211207(53)
\times 10^{-28}$
$\left[\text{F}\right]/\left[\text{m}_\text{p}^{-1}\text{e}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
inductance |
$2.88198916597(90)
\times 10^{-21}$
$\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
reluctance |
$3.4698256739(11)
\times 10^{20}$
$\left[\text{H}^{-1}\right]/\left[\text{m}_\text{p}\cdot
\text{e}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau^{2}2$ |
permeance |
$2.88198916597(90)
\times 10^{-21}$
$\left[\text{H}\right]/\left[\text{m}_\text{p}^{-1}\text{e}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
permittivity |
$8.11939974082986
\times 10^{-13}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{e}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\tau$ |
permeability |
$1.3703599915871335
\times 10^{-5}$ $\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{e}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\tau^{-1}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$5.5612860582(69)
\times 10^{-21}$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\mu_\text{eu}^{4}\mu_\text{pu}^{-4}\tau^{-3}2^{-4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$3.12973880138(98)$ $\left[\text{Wb}
\cdot \text{m}^{-1}\right]/\left[\text{m}_\text{p}\cdot
\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
electric potential |
$9.3827208816(29)
\times 10^{8}$
$\left[\text{V}\right]/\left[\text{m}_\text{p}\cdot
\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
magnetic potential |
$228388.074710(71)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}\cdot
\text{e}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
electric field |
$4.4613995987(28)
\times 10^{24}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{m}_\text{p}^{2}\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
magnetic field |
$1.08596480456(68)
\times 10^{21}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
electric flux |
$1.973269804593025
\times 10^{-7}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\tau^{-1}$ |
magnetic flux |
$6.582119569509067
\times 10^{-16}$
$\left[\text{Wb}\right]/\left[\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\tau^{-1}$ |
electric
displacement |
$3.6223886745(23)
\times 10^{12}$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
magnetic flux
density |
$1.48816272044(93)
\times 10^{16}$
$\left[\text{T}\right]/\left[\text{m}_\text{p}^{2}\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
electric dipole
moment |
$3.3695202206(11)
\times 10^{-35}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{m}_\text{p}^{-1}\text{e}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
magnetic dipole
moment |
$1.01015674922(32)
\times 10^{-26}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\text{e}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
electric
polarizability |
$7.5526079789(71)
\times 10^{-60}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{m}_\text{p}^{-3}\text{e}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-2}2^{-3}$ |
magnetic
polarizability |
$9.3019289849(87)
\times 10^{-48}$
$\left[\text{m}^{3}\right]/\left[\text{m}_\text{p}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-3}\tau^{-3}2^{-3}$ |
magnetic moment |
$1.38427839436(43)
\times 10^{-31}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{m}_\text{p}^{-1}\text{e}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-2}2^{-1}$ |
specific
magnetization |
$12082.9880067(75)$
$\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{m}_\text{p}^{2}\text{e}\right]$ |
$\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
pole strength |
$4.803204712570263
\times 10^{-11}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{e}\right]$ |
$\text{c}\cdot
\text{e}$ |
Name |
Quantity |
Product |
temperature |
$1.08881954500(34)
\times 10^{13}$
$\left[\text{K}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
2$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$8254.3997567(26)$ $\left[\text{J}
\cdot \text{K}^{-1}
\text{kg}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
volume heat capacity |
$1.4842609552(14)
\times 10^{24}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{3}\right]$ |
$\text{k}_\text{B}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{3}\tau^{3}2^{3}$ |
thermal conductivity |
$9.3581206319(58)
\times 10^{16}$ $\left[\text{W} \cdot
\text{m}^{-1}
\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau^{2}2^{2}$ |
thermal conductance |
$19.6809615287(61)$ $\left[\text{W}
\cdot
\text{K}^{-1}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}\cdot
\tau\cdot 2$ |
thermal resistivity |
$1.06859062769(67)
\times 10^{-17}$ $\left[\text{K} \cdot
\text{m} \cdot
\text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-2}\tau^{-2}2^{-2}$ |
thermal resistance |
$0.050810525621(16)$ $\left[\text{K}
\cdot
\text{W}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}\tau^{-1}2^{-1}$ |
thermal expansion |
$9.1842583520(29)
\times 10^{-14}$
$\left[\text{K}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-1}2^{-1}$ |
lapse rate |
$5.1772392490(32)
\times 10^{28}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}^{-2}\mu_\text{pu}^{2}\tau\cdot
2^{2}$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$1.672621924269(88)
\times 10^{-24}$
$\left[\text{mol}\right]/\left[\text{m}_\text{p}\right]$ |
$\text{N}_\text{A}^{-1}\mu_\text{pu}$ |
molarity |
$1.7981452309(17)
\times 10^{23}$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{m}_\text{p}^{4}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}^{-3}\mu_\text{pu}^{4}\tau^{3}2^{3}$ |
molar volume |
$5.5612860563(53)
\times 10^{-24}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
molar entropy |
$8.25439975387(43)$ $\left[\text{J}
\cdot \text{K}^{-1}
\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\mu_\text{pu}^{-1}$ |
molar energy |
$8.9875517843(28)
\times 10^{13}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar conductivity |
$30605.8548669(10)$ $\left[\text{S}
\cdot \text{m}^2
\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-2}\text{e}^{2}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\mu_\text{pu}^{-2}2^{-1}$ |
molar susceptibility |
$5.5612860563(53)
\times 10^{-24}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-4}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{3}\mu_\text{pu}^{-4}\tau^{-3}2^{-3}$ |
catalysis |
$2.38429953910(78)$
$\left[\text{kat}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}\cdot
\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}\tau\cdot
2$ |
specificity |
$7.9275367544(50)$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{m}_\text{p}^{-3}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\mu_\text{eu}^{2}\mu_\text{pu}^{-3}\tau^{-2}2^{-2}$ |
diffusion flux |
$2.65289101583(86)
\times 10^{-17}$
$\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{m}_\text{p}^{2}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\mu_\text{pu}^{2}\tau\cdot
2$ |
|
Unified |
QCDoriginal |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{m}_\text{p}^{-2}$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}_\text{p}^{-2}$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}_\text{p}^{-3}$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}_\text{p}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}_\text{p}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}_\text{p}^{2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}_\text{p}^{3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{m}_\text{p}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{m}_\text{p}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{m}_\text{p}^{2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\mathbb{1}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}_\text{p}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}_\text{p}^{2}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}_\text{p}^{3}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}_\text{p}^{4}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}_\text{p}^{5}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}_\text{p}^{-2}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}_\text{p}^{-2}$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{p}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{m}_\text{p}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{m}_\text{p}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
QCDoriginal |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{m}_\text{p}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\text{m}_\text{p}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{m}_\text{p}^{3}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{m}_\text{p}^{4}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{m}_\text{p}^{5}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}_\text{p}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{m}_\text{p}^{2}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}_\text{p}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{m}_\text{p}^{4}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{m}_\text{p}^{-4}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{m}_\text{p}^{3}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{m}_\text{p}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{m}_\text{p}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{m}_\text{p}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{m}_\text{p}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{m}_\text{p}^{3}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{m}_\text{p}^{2}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{m}_\text{p}^{5}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{m}_\text{p}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{p}^{4}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{m}_\text{p}^{2}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{m}_\text{p}^{3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{m}_\text{p}^{2}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{m}_\text{p}^{7}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{m}_\text{p}^{6}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{m}_\text{p}^{4}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{m}_\text{p}^{-6}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m}_\text{p}^{-3}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{m}_\text{p}^{5}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
QCDoriginal |
SI2019 |
charge |
$\text{Q}$ |
$\text{e}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}_\text{p}^{3}\text{e}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}_\text{p}\cdot \text{e}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{m}_\text{p}^{-1}\text{e}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{e}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{m}_\text{p}\cdot \text{e}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}_\text{p}^{3}\text{e}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{e}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{e}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{m}_\text{p}\cdot \text{e}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{m}_\text{p}^{-1}\text{e}^{2}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{m}_\text{p}\cdot \text{e}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{m}_\text{p}^{-1}\text{e}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{e}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{e}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{m}_\text{p}\cdot
\text{e}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{m}_\text{p}\cdot
\text{e}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{m}_\text{p}\cdot \text{e}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{m}_\text{p}^{2}\text{e}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}_\text{p}^{2}\text{e}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{e}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{e}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}_\text{p}^{2}\text{e}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{m}_\text{p}^{2}\text{e}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}_\text{p}^{-1}\text{e}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}_\text{p}^{-1}\text{e}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{m}_\text{p}^{-3}\text{e}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{p}^{-3}$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{m}_\text{p}^{-1}\text{e}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}_\text{p}^{2}\text{e}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{e}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
QCDoriginal |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{m}_\text{p}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}_\text{p}^{4}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{m}_\text{p}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{m}_\text{p}^{-2}\text{e}^{2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}_\text{p}^{-4}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{m}_\text{p}^{2}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}_\text{p}^{-3}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}_\text{p}^{2}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |