Rydberg -> Metric

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $4.8377686531713(93) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
angular time $4.8377686531713(93) \times 10^{-17}$ $\left[\text{s}\right]/\left[\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$
length $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
angular length $5.29177210902(81) \times 10^{-11}$ $\left[\text{m}\right]/\left[\text{a}_0\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
area $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
angular area $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
volume $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^3\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
wavenumber $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
angular wavenumber $1.88972612463(29) \times 10^{10}$ $\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
fuel efficiency $3.5710648261(11) \times 10^{20}$ $\left[\text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
number density $6.7483344946(31) \times 10^{30}$ $\left[\text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
frequency $2.0670686667591(40) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau$
angular frequency $2.0670686667591(40) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau$
frequency drift $4.272772873097(16) \times 10^{32}$ $\left[\text{Hz} \cdot \text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ $\text{c}^{2}\text{R}_{\infty}^{2}\tau^{2}$
stagnance $9.1420578088(14) \times 10^{-7}$ $\left[\text{m}^{-1}\text{s}\right]/\left[\text{L}^{-1}\text{T}\right]$ $\text{c}^{-1}\alpha^{-1}2$
speed $1.09384563182(17) \times 10^{6}$ $\left[\text{m}\cdot \text{s}^{-1}\right]/\left[\text{L}\cdot \text{T}^{-1}\right]$ $\text{c}\cdot \alpha\cdot 2^{-1}$
acceleration $2.26105403180(35) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{L}\cdot \text{T}^{-2}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2^{-1}$
jerk $4.67375394299(72) \times 10^{38}$ $\left[\text{m}\cdot \text{s}^{-3}\right]/\left[\text{L}\cdot \text{T}^{-3}\right]$ $\text{c}^{3}\text{R}_{\infty}^{2}\alpha\cdot \tau^{2}2^{-1}$
snap $9.6609703317(15) \times 10^{54}$ $\left[\text{m}\cdot \text{s}^{-4}\right]/\left[\text{L}\cdot \text{T}^{-4}\right]$ $\text{c}^{4}\text{R}_{\infty}^{3}\alpha\cdot \tau^{3}2^{-1}$
crackle $1.99698890632(31) \times 10^{71}$ $\left[\text{m}\cdot \text{s}^{-5}\right]/\left[\text{L}\cdot \text{T}^{-5}\right]$ $\text{c}^{5}\text{R}_{\infty}^{4}\alpha\cdot \tau^{4}2^{-1}$
pop $4.12791319611(63) \times 10^{87}$ $\left[\text{m}\cdot \text{s}^{-6}\right]/\left[\text{L}\cdot \text{T}^{-6}\right]$ $\text{c}^{6}\text{R}_{\infty}^{5}\alpha\cdot \tau^{5}2^{-1}$
volume flow $3.0630797398(14) \times 10^{-15}$ $\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{L}^{3}\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-3}$
etendue $2.80028520538(86) \times 10^{-21}$ $\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
photon intensity $2.0670686667591(40) \times 10^{16}$ $\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau$
photon irradiance $17275.9854742(53)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{2}$
photon radiance $17275.9854742(53)$ $\left[\text{Hz} \cdot \text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{2}$

Mechanical Ratios

Name Quantity Product
inertia $1.82187674031(56) \times 10^{-30}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{2}$
mass $1.82187674031(56) \times 10^{-30}$ $\left[\text{kg}\right]/\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{2}$
mass flow $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$
linear density $3.4428480720(16) \times 10^{-20}$ $\left[\text{kg}\cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau\cdot 2^{3}$
area density $6.5060399448(40) \times 10^{-10}$ $\left[\text{kg}\cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{L}^{-2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-4}\tau^{2}2^{4}$
density $12.2946336516(94)$ $\left[\text{kg}\cdot \text{m}^{-3}\right]/\left[\text{M}\cdot \text{L}^{-3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$
specific weight $2.7798830988(17) \times 10^{23}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{5}\alpha^{-4}\tau^{4}2^{4}$
specific volume $0.081336299099(62)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$
force $4.11936174913(63) \times 10^{-8}$ $\left[\text{N}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot 2$
specific force $2.26105403180(35) \times 10^{22}$ $\left[\text{m}\cdot \text{s}^{-2}\right]/\left[\text{L}\cdot \text{T}^{-2}\right]$ $\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $1.47105078483(68) \times 10^{13}$ $\left[\text{Pa}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{3}$
compressibility $6.7978618435(31) \times 10^{-14}$ $\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-1}\text{L}\cdot \text{T}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-3}$
viscosity $0.00071166033741(33)$ $\left[\text{Pa} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{3}\alpha^{-3}\tau^{2}2^{3}$
diffusivity $5.7883818060(18) \times 10^{-5}$ $\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$
rotational inertia $5.1017744819265(98) \times 10^{-51}$ $\left[\text{kg}\cdot \text{m}^{2}\right]/\left[\text{M}\cdot \text{L}^{2}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-2}$
impulse $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$
momentum $1.99285191410(31) \times 10^{-24}$ $\left[\text{N} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}\cdot \alpha^{-1}2$
angular momentum $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\hbar\cdot \tau^{-1}$
yank $8.5150035987(13) \times 10^{8}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2$
energy $2.1798723611036(42) \times 10^{-18}$ $\left[\text{J}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}$
specific energy $1.19649826625(37) \times 10^{12}$ $\left[\text{J} \cdot \text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ $\text{c}^{2}\alpha^{2}2^{-2}$
action $1.0545718176461565 \times 10^{-34}$ $\left[\text{J} \cdot \text{s}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\hbar\cdot \tau^{-1}$
fluence $778.44655141(24)$ $\left[\text{N} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-2}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{2}$
power $0.04505945855172(17)$ $\left[\text{W}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau$
power density $3.0407629845(14) \times 10^{29}$ $\left[\text{W} \cdot \text{m}^{-3}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-3}\tau^{4}2^{3}$
irradiance $1.60910247517(49) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$
radiance $1.60910247517(49) \times 10^{19}$ $\left[\text{W} \cdot \text{m}^{-2}\right]/\left[\text{M}\cdot \text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$
radiant intensity $0.04505945855172(17)$ $\left[\text{W}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{2}\tau$
spectral flux $8.5150035987(13) \times 10^{8}$ $\left[\text{N} \cdot \text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-3}\right]$ $\hbar\cdot \text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2$
spectral exposure $3.7659443246(12) \times 10^{-14}$ $\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{2}$
sound exposure $1.04688849788(96) \times 10^{10}$ $\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]$ $\hbar^{2}\text{c}\cdot \text{R}_{\infty}^{7}\alpha^{-6}\tau^{5}2^{6}$
impedance $4.8025220034(44) \times 10^{27}$ $\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-4}\text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$
specific impedance $1.34484313146(82) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{4}\alpha^{-4}\tau^{3}2^{4}$
admittance $2.0822392886(19) \times 10^{-28}$ $\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$
compliance $0.00128460971172(39)$ $\left[\text{m} \cdot \text{N}^{-1}\right]/\left[\text{M}^{-1}\text{T}^{2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-2}$
inertance $2.3233490404(21) \times 10^{11}$ $\left[\text{kg}\cdot \text{m}^{-4}\right]/\left[\text{M}\cdot \text{L}^{-4}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-6}\tau^{4}2^{6}$

Electromagnetic Ratios

Name Quantity Product
charge $1.132909962869(87) \times 10^{-19}$ $\left[\text{C}\right]/\left[\text{Q}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\alpha^{1/2}\tau^{-1/2}2^{3}5^{7/2}$
charge density $7.6452553817(29) \times 10^{11}$ $\left[\text{m}^{-3}\text{C}\right]/\left[\text{L}^{-3}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{3}\alpha^{-5/2}\tau^{5/2}2^{6}5^{7/2}$
linear charge density $2.14088955369(16) \times 10^{-9}$ $\left[\text{m}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}\cdot \alpha^{-1/2}\tau^{1/2}2^{4}5^{7/2}$
exposure $6.2183677842(24) \times 10^{10}$ $\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\text{Q}\right]$ $\hbar^{-1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2\cdot 5^{7/2}$
mobility $0.00111376313459(26)$ $\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]/\left[\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{5/2}\alpha^{3/2}\tau^{-1/2}2^{-5}5^{-7/2}$
current $0.00234180268651(18)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{1/2}\tau^{1/2}2^{3}5^{7/2}$
current density $8.3627292035(19) \times 10^{17}$ $\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{3}\alpha^{-3/2}\tau^{5/2}2^{5}5^{7/2}$
resistance $8216.4718000(13)$ $\left[\Omega\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ $\text{c}\cdot \alpha^{-1}2^{-6}5^{-7}$
conductance $0.000121706740356(19)$ $\left[\text{S}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}\right]$ $\text{c}^{-1}\alpha\cdot 2^{6}5^{7}$
resistivity $4.3479696305684(83) \times 10^{-7}$ $\left[\Omega \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\tau^{-1}2^{-7}5^{-7}$
conductivity $2.2999240679362(44) \times 10^{6}$ $\left[\text{S} \cdot \text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \tau\cdot 2^{7}5^{7}$
capacitance $5.88789053373(90) \times 10^{-21}$ $\left[\text{F}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{6}5^{7}$
inductance $3.97493897136(61) \times 10^{-13}$ $\left[\text{H}\right]/\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-6}5^{-7}$
reluctance $2.51576189523(39) \times 10^{12}$ $\left[\text{H}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]$ $\text{R}_{\infty}\cdot \alpha\cdot \tau\cdot 2^{6}5^{7}$
permeance $3.97493897136(61) \times 10^{-13}$ $\left[\text{H}\right]/\left[\text{M}\cdot \text{L}^{2}\text{Q}^{-2}\right]$ $\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-6}5^{-7}$
permittivity $1.1126500560536183 \times 10^{-10}$ $\left[\text{F} \cdot \text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ $\text{c}^{-2}2^{7}5^{7}$
permeability $0.0075115460180(23)$ $\left[\text{H} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{Q}^{-2}\right]$ $\alpha^{-2}2^{-5}5^{-7}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $0.081336299099(62)$ $\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $1.75905586447(40) \times 10^{-5}$ $\left[\text{Wb} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{-3/2}\tau^{1/2}2^{-2}5^{-7/2}$
electric potential $19.2413557348(15)$ $\left[\text{V}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}\cdot \alpha^{-1/2}\tau^{1/2}2^{-3}5^{-7/2}$
magnetic potential $0.00234180268651(18)$ $\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}\cdot \alpha^{1/2}\tau^{1/2}2^{3}5^{7/2}$
electric field $3.63608926053(84) \times 10^{11}$ $\left[\text{V} \cdot \text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\text{R}_{\infty}^{2}\alpha^{-3/2}\tau^{3/2}2^{-2}5^{-7/2}$
magnetic field $4.42536571541(34) \times 10^{7}$ $\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-1/2}\tau^{3/2}2^{4}5^{7/2}$
electric flux $1.018208696171(78) \times 10^{-9}$ $\left[\text{V} \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{3/2}\alpha^{1/2}\tau^{-1/2}2^{-4}5^{-7/2}$
magnetic flux $9.30852276182(71) \times 10^{-16}$ $\left[\text{Wb}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\alpha^{-1/2}\tau^{-1/2}2^{-3}5^{-7/2}$
electric displacement $40.45694919540(93)$ $\left[\text{m}^{-2}\text{C}\right]/\left[\text{L}^{-2}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{2}\alpha^{-3/2}\tau^{3/2}2^{5}5^{7/2}$
magnetic flux density $332413.38218(13)$ $\left[\text{T}\right]/\left[\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{2}\alpha^{-5/2}\tau^{3/2}2^{-1}5^{-7/2}$
electric dipole moment $5.9951013435(14) \times 10^{-30}$ $\left[\text{m}\cdot \text{C}\right]/\left[\text{L}\cdot \text{Q}\right]$ $\hbar^{1/2}\text{c}^{-1/2}\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-3/2}2^{2}5^{7/2}$
magnetic dipole moment $6.5577154169(25) \times 10^{-24}$ $\left[\text{J} \cdot \text{T}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-3/2}2\cdot 5^{7/2}$
electric polarizability $1.64877727525(76) \times 10^{-41}$ $\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{4}5^{7}$
magnetic polarizability $1.48184711472(68) \times 10^{-31}$ $\left[\text{m}^{3}\right]/\left[\text{a}_0^3\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
magnetic moment $4.92585811272(38) \times 10^{-26}$ $\left[\text{Wb} \cdot \text{m}\right]/\left[\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]$ $\hbar^{1/2}\text{c}^{1/2}\text{R}_{\infty}^{-1}\alpha^{1/2}\tau^{-3/2}2^{-4}5^{-7/2}$
specific magnetization $3.6985976831(14) \times 10^{-5}$ $\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]/\left[\text{L}^{-3}\text{T}\cdot \text{Q}\right]$ $\hbar^{1/2}\text{c}^{-3/2}\text{R}_{\infty}^{2}\alpha^{-5/2}\tau^{3/2}2^{6}5^{7/2}$
pole strength $1.23922861413(28) \times 10^{-13}$ $\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]/\left[\text{L}\cdot \text{T}^{-1}\text{Q}\right]$ $\hbar^{1/2}\text{c}^{1/2}\alpha^{3/2}\tau^{-1/2}2^{2}5^{7/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $157887.512456(49)$ $\left[\text{K}\right]/\left[\text{T}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\alpha^{2}\mu_\text{eu}\cdot 2^{-4}5^{-3}$
entropy $1.38064899953(43) \times 10^{-23}$ $\left[\text{J} \cdot \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$
specific entropy $7.57816908782(22) \times 10^{6}$ $\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}2^{2}5^{3}$
volume heat capacity $9.3170812685(71) \times 10^{7}$ $\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{-1}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\mu_\text{eu}^{-1}\tau^{3}2^{7}5^{3}$
thermal conductivity $5393.0823700(25)$ $\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot \text{T}^{-2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}^{-1}\tau^{2}2^{5}5^{3}$
thermal conductance $2.85389628671(88) \times 10^{-7}$ $\left[\text{W} \cdot \text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}^{2}\text{T}^{-2}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\mu_\text{eu}^{-1}\tau\cdot 2^{4}5^{3}$
thermal resistivity $0.000185422719587(85)$ $\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}\cdot \tau^{-2}2^{-5}5^{-3}$
thermal resistance $3.5039815730(11) \times 10^{6}$ $\left[\text{K} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\mu_\text{eu}\cdot \tau^{-1}2^{-4}5^{-3}$
thermal expansion $6.3336231247(19) \times 10^{-6}$ $\left[\text{K}^{-1}\right]/\left[\text{T}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\alpha^{-2}\mu_\text{eu}^{-1}2^{4}5^{3}$
lapse rate $2.98364157041(47) \times 10^{15}$ $\left[\text{m}^{-1}\text{K}\right]/\left[\text{L}^{-1}\text{T}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot \mu_\text{eu}\cdot \tau\cdot 2^{-3}5^{-3}$

Molar Ratios

Name Quantity Product
molar mass $0.001$ $\left[\text{kg}\cdot \text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ $2^{-3}5^{-3}$
molality $1000.0$ $\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ $2^{3}5^{3}$
molar amount $1.82187674031(56) \times 10^{-27}$ $\left[\text{mol}\right]/\left[\text{M}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2^{5}5^{3}$
molarity $12294.6336516(94)$ $\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}\cdot \text{L}^{-3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{8}5^{3}$
molar volume $8.1336299099(62) \times 10^{-5}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-8}5^{-3}$
molar entropy $7578.16908782(22)$ $\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \mu_\text{eu}^{-1}2^{-1}$
molar energy $1.19649826625(37) \times 10^{9}$ $\left[\text{J} \cdot \text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ $\text{c}^{2}\alpha^{2}2^{-5}5^{-3}$
molar conductivity $3.5350598635(22) \times 10^{12}$ $\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]/\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}5^{4}$
molar susceptibility $8.1336299099(62) \times 10^{-5}$ $\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-8}5^{-3}$
catalysis $3.7659443246(12) \times 10^{-11}$ $\left[\text{kat}\right]/\left[\text{M}\cdot \text{T}^{-1}\right]$ $\hbar\cdot \text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot 2^{5}5^{3}$
specificity $1.6812771534(13) \times 10^{12}$ $\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]$ $\hbar^{-1}\text{c}^{2}\text{R}_{\infty}^{-3}\alpha^{5}\tau^{-2}2^{-8}5^{-3}$
diffusion flux $3.1474716101(19) \times 10^{-23}$ $\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]/\left[\text{M}\cdot \text{L}^{-2}\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\tau\cdot 2^{7}5^{3}$

Photometric Ratios

Name Quantity Product
luminous flux $30.776497415620(12)$ $\left[\text{cd}\right]/\left[\text{T}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau$
luminous intensity $30.776497415620(12)$ $\left[\text{cd}\right]/\left[\text{T}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{2}\tau$
luminance $1.09904867392(34) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{L}^{-2}\text{T}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$
illuminance $1.09904867392(34) \times 10^{22}$ $\left[\text{lx}\right]/\left[\text{L}^{-2}\text{T}^{2}\right]$ $\hbar\cdot \text{c}^{2}\text{K}_\text{cd}\cdot \text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$
luminous energy $1.4888957445169(28) \times 10^{-15}$ $\left[\text{s}\cdot \text{lm}\right]/\left[\text{T}^{3}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}$
luminous exposure $531694.32230(16)$ $\left[\text{lx} \cdot \text{s}\right]/\left[\text{L}^{-2}\text{T}^{3}\right]$ $\hbar\cdot \text{c}\cdot \text{K}_\text{cd}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{2}$
luminous efficacy $683.01969009009$ $\left[\text{lm} \cdot \text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{5}\right]$ $\text{K}_\text{cd}$

Kinematic

Unified Rydberg Metric
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{T}$ $\text{s}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{T}$ $\text{s}$
length $\text{L}$ $\text{a}_0$ $\text{m}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{a}_0$ $\text{m}$
area $\text{L}^{2}$ $\text{a}_0^2$ $\text{m}^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{a}_0^2$ $\text{m}^{2}$
volume $\text{L}^{3}$ $\text{a}_0^3$ $\text{m}^{3}$
wavenumber $\text{L}^{-1}$ $\text{a}_0^{-1}$ $\text{m}^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{a}_0^{-1}$ $\text{m}^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{a}_0^{-2}$ $\text{m}^{-2}$
number density $\text{L}^{-3}$ $\text{a}_0^{-3}$ $\text{m}^{-3}$
frequency $\text{T}^{-1}$ $\text{T}^{-1}$ $\text{Hz}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{T}^{-1}$ $\text{Hz}$
frequency drift $\text{T}^{-2}$ $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$
stagnance $\text{L}^{-1}\text{T}$ $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{a}_0^2$ $\text{m}^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{T}^{-1}$ $\text{Hz}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$

Mechanical

Unified Rydberg Metric
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{M}$ $\text{kg}$
mass $\text{M}$ $\text{M}$ $\text{kg}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-2}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
force $\text{F}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\text{N}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-2}$ $\text{Pa}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{M}^{-1}\text{L}\cdot \text{T}^{2}$ $\text{Pa}^{-1}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{Pa} \cdot \text{s}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{s}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$
energy $\text{F}\cdot \text{L}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$ $\text{J}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{L}^{2}\text{T}^{-2}$ $\text{J} \cdot \text{kg}^{-1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{s}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{M}\cdot \text{T}^{-2}$ $\text{N} \cdot \text{m}^{-1}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{W}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-3}$ $\text{W} \cdot \text{m}^{-3}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{M}\cdot \text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{T}^{-3}$ $\text{W} \cdot \text{m}^{-2}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-3}$ $\text{W}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{M}\cdot \text{L}^{-4}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{M}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{M}^{-1}\text{L}^{4}\text{T}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$

Electromagnetic

Unified Rydberg Metric
charge $\text{Q}$ $\text{Q}$ $\text{C}$
charge density $\text{L}^{-3}\text{Q}$ $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$
exposure $\text{M}^{-1}\text{Q}$ $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ $\Omega$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}\cdot \text{Q}^{2}$ $\text{S}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ $\Omega \cdot \text{m}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-3}\text{T}\cdot \text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ $\text{F}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{H}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ $\text{H}^{-1}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}^{2}\text{Q}^{-2}$ $\text{H}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ $\text{F} \cdot \text{m}^{-1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{M}\cdot \text{L}\cdot \text{Q}^{-2}$ $\text{H} \cdot \text{m}^{-1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{Wb} \cdot \text{m}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ $\text{V}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{L}^{-1}\text{T}^{-1}\text{Q}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ $\text{Wb}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{L}^{-2}\text{Q}$ $\text{m}^{-2}\text{C}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{T}^{-1}\text{Q}^{-1}$ $\text{T}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}^{2}\text{T}^{-1}\text{Q}$ $\text{J} \cdot \text{T}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{a}_0^3$ $\text{m}^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{M}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{Wb} \cdot \text{m}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{L}^{-3}\text{T}\cdot \text{Q}$ $\text{m}^{-3}\text{s}\cdot \text{C}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{L}\cdot \text{T}^{-1}\text{Q}$ $\text{m}\cdot \text{s}^{-1}\text{C}$

Thermodynamic

Unified Rydberg Metric
temperature $\Theta$ $\text{T}^{-1}$ $\text{K}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{M}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{M}\cdot \text{L}^{2}\text{T}^{-2}$ $\text{W} \cdot \text{K}^{-1}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$ $\text{K} \cdot \text{W}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{T}$ $\text{K}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{L}^{-1}\text{T}^{-1}$ $\text{m}^{-1}\text{K}$

Molar

Unified Rydberg Metric
molar mass $\text{M}\cdot \text{N}^{-1}$ $\mathbb{1}$ $\text{kg}\cdot \text{mol}^{-1}$
molality $\text{M}^{-1}\text{N}$ $\mathbb{1}$ $\text{kg}^{-1}\text{mol}$
molar amount $\text{N}$ $\text{M}$ $\text{mol}$
molarity $\text{L}^{-3}\text{N}$ $\text{M}\cdot \text{L}^{-3}$ $\text{m}^{-3}\text{mol}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{L}^{2}\text{T}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{L}^{2}\text{T}^{-2}$ $\text{J} \cdot \text{mol}^{-1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{M}^{-2}\text{L}^{-1}\text{T}\cdot \text{Q}^{2}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{M}^{-1}\text{L}^{3}$ $\text{m}^{3}\text{mol}^{-1}$
catalysis $\text{T}^{-1}\text{N}$ $\text{M}\cdot \text{T}^{-1}$ $\text{kat}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{M}\cdot \text{L}^{-2}\text{T}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$

Photometric

Unified Rydberg Metric
luminous flux $\text{J}$ $\text{T}^{2}$ $\text{cd}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{T}^{2}$ $\text{cd}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{L}^{-2}\text{T}^{2}$ $\text{lx}$
illuminance $\text{L}^{-2}\text{J}$ $\text{L}^{-2}\text{T}^{2}$ $\text{lx}$
luminous energy $\text{T}\cdot \text{J}$ $\text{T}^{3}$ $\text{s}\cdot \text{lm}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{L}^{-2}\text{T}^{3}$ $\text{lx} \cdot \text{s}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{M}^{-1}\text{L}^{-2}\text{T}^{5}$ $\text{lm} \cdot \text{W}^{-1}$