Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$4.8377686531713(93)
\times 10^{-17}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
angular time |
$4.8377686531713(93)
\times 10^{-17}$
$\left[\text{s}\right]/\left[\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
length |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{m}\right]/\left[\text{a}_0\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
angular length |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{m}\right]/\left[\text{a}_0\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
area |
$2.80028520538(86)
\times 10^{-21}$
$\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
angular area |
$2.80028520538(86)
\times 10^{-21}$
$\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
volume |
$1.48184711472(68)
\times 10^{-31}$
$\left[\text{m}^{3}\right]/\left[\text{a}_0^3\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
wavenumber |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
angular wavenumber |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{m}^{-1}\right]/\left[\text{a}_0^{-1}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
fuel efficiency |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{m}^{-2}\right]/\left[\text{a}_0^{-2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
number density |
$6.7483344946(31)
\times 10^{30}$
$\left[\text{m}^{-3}\right]/\left[\text{a}_0^{-3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
frequency |
$2.0670686667591(40)
\times 10^{16}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
angular frequency |
$2.0670686667591(40)
\times 10^{16}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
frequency drift |
$4.272772873097(16)
\times 10^{32}$ $\left[\text{Hz} \cdot
\text{s}^{-1}\right]/\left[\text{T}^{-2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}^{2}\tau^{2}$ |
stagnance |
$9.1420578088(14)
\times 10^{-7}$
$\left[\text{m}^{-1}\text{s}\right]/\left[\text{L}^{-1}\text{T}\right]$ |
$\text{c}^{-1}\alpha^{-1}2$ |
speed |
$1.09384563182(17)
\times 10^{6}$ $\left[\text{m}\cdot
\text{s}^{-1}\right]/\left[\text{L}\cdot
\text{T}^{-1}\right]$ |
$\text{c}\cdot
\alpha\cdot 2^{-1}$ |
acceleration |
$2.26105403180(35)
\times 10^{22}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{L}\cdot
\text{T}^{-2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot
\tau\cdot 2^{-1}$ |
jerk |
$4.67375394299(72)
\times 10^{38}$ $\left[\text{m}\cdot
\text{s}^{-3}\right]/\left[\text{L}\cdot
\text{T}^{-3}\right]$ |
$\text{c}^{3}\text{R}_{\infty}^{2}\alpha\cdot
\tau^{2}2^{-1}$ |
snap |
$9.6609703317(15)
\times 10^{54}$ $\left[\text{m}\cdot
\text{s}^{-4}\right]/\left[\text{L}\cdot
\text{T}^{-4}\right]$ |
$\text{c}^{4}\text{R}_{\infty}^{3}\alpha\cdot
\tau^{3}2^{-1}$ |
crackle |
$1.99698890632(31)
\times 10^{71}$ $\left[\text{m}\cdot
\text{s}^{-5}\right]/\left[\text{L}\cdot
\text{T}^{-5}\right]$ |
$\text{c}^{5}\text{R}_{\infty}^{4}\alpha\cdot
\tau^{4}2^{-1}$ |
pop |
$4.12791319611(63)
\times 10^{87}$ $\left[\text{m}\cdot
\text{s}^{-6}\right]/\left[\text{L}\cdot
\text{T}^{-6}\right]$ |
$\text{c}^{6}\text{R}_{\infty}^{5}\alpha\cdot
\tau^{5}2^{-1}$ |
volume flow |
$3.0630797398(14)
\times 10^{-15}$
$\left[\text{m}^{3}\text{s}^{-1}\right]/\left[\text{L}^{3}\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-3}$ |
etendue |
$2.80028520538(86)
\times 10^{-21}$
$\left[\text{m}^{2}\right]/\left[\text{a}_0^2\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
photon intensity |
$2.0670686667591(40)
\times 10^{16}$
$\left[\text{Hz}\right]/\left[\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
photon irradiance |
$17275.9854742(53)$ $\left[\text{Hz}
\cdot
\text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2^{2}$ |
photon radiance |
$17275.9854742(53)$ $\left[\text{Hz}
\cdot
\text{m}^{-2}\right]/\left[\text{L}^{-2}\text{T}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2^{2}$ |
Name |
Quantity |
Product |
inertia |
$1.82187674031(56)
\times 10^{-30}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2^{2}$ |
mass |
$1.82187674031(56)
\times 10^{-30}$
$\left[\text{kg}\right]/\left[\text{M}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2^{2}$ |
mass flow |
$3.7659443246(12)
\times 10^{-14}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot
2^{2}$ |
linear density |
$3.4428480720(16)
\times 10^{-20}$ $\left[\text{kg}\cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau\cdot
2^{3}$ |
area density |
$6.5060399448(40)
\times 10^{-10}$ $\left[\text{kg}\cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{L}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{3}\alpha^{-4}\tau^{2}2^{4}$ |
density |
$12.2946336516(94)$
$\left[\text{kg}\cdot
\text{m}^{-3}\right]/\left[\text{M}\cdot
\text{L}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{5}$ |
specific weight |
$2.7798830988(17)
\times 10^{23}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{5}\alpha^{-4}\tau^{4}2^{4}$ |
specific volume |
$0.081336299099(62)$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$ |
force |
$4.11936174913(63)
\times 10^{-8}$
$\left[\text{N}\right]/\left[\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot
2$ |
specific force |
$2.26105403180(35)
\times 10^{22}$ $\left[\text{m}\cdot
\text{s}^{-2}\right]/\left[\text{L}\cdot
\text{T}^{-2}\right]$ |
$\text{c}^{2}\text{R}_{\infty}\cdot \alpha\cdot
\tau\cdot 2^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$1.47105078483(68)
\times 10^{13}$
$\left[\text{Pa}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{3}$ |
compressibility |
$6.7978618435(31)
\times 10^{-14}$
$\left[\text{Pa}^{-1}\right]/\left[\text{M}^{-1}\text{L}\cdot
\text{T}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-3}$ |
viscosity |
$0.00071166033741(33)$
$\left[\text{Pa} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{3}\alpha^{-3}\tau^{2}2^{3}$ |
diffusivity |
$5.7883818060(18)
\times 10^{-5}$
$\left[\text{m}^{2}\text{s}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-2}$ |
rotational inertia |
$5.1017744819265(98)
\times 10^{-51}$ $\left[\text{kg}\cdot
\text{m}^{2}\right]/\left[\text{M}\cdot
\text{L}^{2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-2}$ |
impulse |
$1.99285191410(31)
\times 10^{-24}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-1}2$ |
momentum |
$1.99285191410(31)
\times 10^{-24}$ $\left[\text{N} \cdot
\text{s}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}\cdot \alpha^{-1}2$ |
angular momentum |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
yank |
$8.5150035987(13)
\times 10^{8}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2$ |
energy |
$2.1798723611036(42)
\times 10^{-18}$
$\left[\text{J}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{R}_{\infty}$ |
specific energy |
$1.19649826625(37)
\times 10^{12}$ $\left[\text{J} \cdot
\text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{c}^{2}\alpha^{2}2^{-2}$ |
action |
$1.0545718176461565
\times 10^{-34}$ $\left[\text{J} \cdot
\text{s}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\tau^{-1}$ |
fluence |
$778.44655141(24)$ $\left[\text{N}
\cdot \text{m}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{2}$ |
power |
$0.04505945855172(17)$
$\left[\text{W}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\tau$ |
power density |
$3.0407629845(14)
\times 10^{29}$ $\left[\text{W} \cdot
\text{m}^{-3}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{5}\alpha^{-3}\tau^{4}2^{3}$ |
irradiance |
$1.60910247517(49)
\times 10^{19}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$ |
radiance |
$1.60910247517(49)
\times 10^{19}$ $\left[\text{W} \cdot
\text{m}^{-2}\right]/\left[\text{M}\cdot
\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{4}\alpha^{-2}\tau^{3}2^{2}$ |
radiant intensity |
$0.04505945855172(17)$
$\left[\text{W}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{2}\tau$ |
spectral flux |
$8.5150035987(13)
\times 10^{8}$ $\left[\text{N} \cdot
\text{s}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-3}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{R}_{\infty}^{3}\alpha^{-1}\tau^{2}2$ |
spectral exposure |
$3.7659443246(12)
\times 10^{-14}$ $\left[\text{J} \cdot
\text{m}^{-2} \cdot
\text{Hz}^{-1}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot
2^{2}$ |
sound exposure |
$1.04688849788(96)
\times 10^{10}$
$\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]/\left[\text{M}^{2}\text{L}^{-2}\text{T}^{-3}\right]$ |
$\hbar^{2}\text{c}\cdot
\text{R}_{\infty}^{7}\alpha^{-6}\tau^{5}2^{6}$ |
impedance |
$4.8025220034(44)
\times 10^{27}$ $\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$ |
specific impedance |
$1.34484313146(82)
\times 10^{7}$ $\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{4}\alpha^{-4}\tau^{3}2^{4}$ |
admittance |
$2.0822392886(19)
\times 10^{-28}$
$\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]/\left[\text{M}^{-1}\text{L}^{4}\text{T}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$ |
compliance |
$0.00128460971172(39)$
$\left[\text{m} \cdot
\text{N}^{-1}\right]/\left[\text{M}^{-1}\text{T}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-2}$ |
inertance |
$2.3233490404(21)
\times 10^{11}$ $\left[\text{kg}\cdot
\text{m}^{-4}\right]/\left[\text{M}\cdot
\text{L}^{-4}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{5}\alpha^{-6}\tau^{4}2^{6}$ |
Name |
Quantity |
Product |
charge |
$1.1329099625600371
\times 10^{-19}$
$\left[\text{C}\right]/\left[\text{Q}\right]$ |
$\text{e}\cdot
2^{-1/2}$ |
charge density |
$7.6452553797(35)
\times 10^{11}$
$\left[\text{m}^{-3}\text{C}\right]/\left[\text{L}^{-3}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{5/2}$ |
linear charge
density |
$2.14088955310(33)
\times 10^{-9}$
$\left[\text{m}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2^{1/2}$ |
exposure |
$6.2183677825(19)
\times 10^{10}$
$\left[\text{kg}^{-1}\text{C}\right]/\left[\text{M}^{-1}\text{Q}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-5/2}$ |
mobility |
$0.00111376313489(34)$
$\left[\text{m}^2 \text{s}^{-1}
\text{V}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{2}\text{e}^{-1}\alpha^{2}\tau^{-1}2^{-3/2}$ |
current |
$0.0023418026858671(45)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot \tau\cdot
2^{-1/2}$ |
current density |
$8.3627292012(26)
\times 10^{17}$
$\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-2}\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{3}\alpha^{-2}\tau^{3}2^{3/2}$ |
resistance |
$8216.471804455321$
$\left[\Omega\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\tau^{-1}2$ |
conductance |
$0.00012170674028939736$
$\left[\text{S}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\tau\cdot
2^{-1}$ |
resistivity |
$4.34796963294(67)
\times 10^{-7}$ $\left[\Omega \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-2}$ |
conductivity |
$2.29992406668(35)
\times 10^{6}$ $\left[\text{S} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-1}\tau^{2}$ |
capacitance |
$5.887890530517(11)
\times 10^{-21}$
$\left[\text{F}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}2^{-1}$ |
inductance |
$3.9749389735260(76)
\times 10^{-13}$
$\left[\text{H}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2$ |
reluctance |
$2.5157618938561(48)
\times 10^{12}$
$\left[\text{H}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\tau^{2}2^{-1}$ |
permeance |
$3.9749389735260(76)
\times 10^{-13}$
$\left[\text{H}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2$ |
permittivity |
$1.11265005545(17)
\times 10^{-10}$ $\left[\text{F} \cdot
\text{m}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
permeability |
$0.0075115460221(12)$
$\left[\text{H} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{Q}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\alpha^{-1}\tau^{-1}2^{2}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$0.081336299099(62)$
$\left[\text{kg}^{-1}\text{m}^{3}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-5}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$1.75905586495(27)
\times 10^{-5}$ $\left[\text{Wb} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-1}2^{3/2}$ |
electric potential |
$19.241355740025(37)$
$\left[\text{V}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}\cdot
2^{1/2}$ |
magnetic potential |
$0.0023418026858671(45)$
$\left[\text{s}^{-1}\text{C}\right]/\left[\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \text{R}_{\infty}\cdot \tau\cdot
2^{-1/2}$ |
electric field |
$3.63608926152(56)
\times 10^{11}$ $\left[\text{V} \cdot
\text{m}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot
2^{3/2}$ |
magnetic field |
$4.42536571421(68)
\times 10^{7}$
$\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]/\left[\text{L}^{-1}\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2^{1/2}$ |
electric flux |
$1.01820869645(16)
\times 10^{-9}$ $\left[\text{V} \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-1}\alpha\cdot
\tau^{-1}2^{-1/2}$ |
magnetic flux |
$9.308522764361082
\times 10^{-16}$
$\left[\text{Wb}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\tau^{-1}2^{1/2}$ |
electric
displacement |
$40.4569491840(12)$
$\left[\text{m}^{-2}\text{C}\right]/\left[\text{L}^{-2}\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{3/2}$ |
magnetic flux
density |
$332413.38227(10)$
$\left[\text{T}\right]/\left[\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{2}\alpha^{-2}\tau\cdot
2^{5/2}$ |
electric dipole
moment |
$5.99510134191(92)
\times 10^{-30}$ $\left[\text{m}\cdot
\text{C}\right]/\left[\text{L}\cdot
\text{Q}\right]$ |
$\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-3/2}$ |
magnetic dipole
moment |
$6.5577154152(20)
\times 10^{-24}$ $\left[\text{J} \cdot
\text{T}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-5/2}$ |
electric
polarizability |
$1.64877727435(51)
\times 10^{-41}$
$\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]/\left[\text{M}^{-1}\text{T}^{2}\text{Q}^{2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}^{2}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$ |
magnetic
polarizability |
$1.48184711472(68)
\times 10^{-31}$
$\left[\text{m}^{3}\right]/\left[\text{a}_0^3\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
magnetic moment |
$4.92585811407(75)
\times 10^{-26}$ $\left[\text{Wb} \cdot
\text{m}\right]/\left[\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-2}2^{-1/2}$ |
specific
magnetization |
$3.6985976821(17)
\times 10^{-5}$
$\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]/\left[\text{L}^{-3}\text{T}\cdot
\text{Q}\right]$ |
$\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{5/2}$ |
pole strength |
$1.23922861379(19)
\times 10^{-13}$ $\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]/\left[\text{L}\cdot
\text{T}^{-1}\text{Q}\right]$ |
$\text{c}\cdot
\text{e}\cdot \alpha\cdot 2^{-3/2}$ |
Name |
Quantity |
Product |
temperature |
$157887.51240204(30)$
$\left[\text{K}\right]/\left[\text{T}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}$ |
entropy |
$1.380649 \times
10^{-23}$ $\left[\text{J} \cdot
\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}$ |
specific entropy |
$7.5781690904(23)
\times 10^{6}$ $\left[\text{J} \cdot
\text{K}^{-1}
\text{kg}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-2}$ |
volume heat capacity |
$9.3170812717(43)
\times 10^{7}$ $\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
thermal conductivity |
$5393.08237183(83)$ $\left[\text{W}
\cdot \text{m}^{-1}
\text{K}^{-1}\right]/\left[\text{M}\cdot \text{L}\cdot
\text{T}^{-2}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2$ |
thermal conductance |
$2.8538962876923(55)
\times 10^{-7}$ $\left[\text{W} \cdot
\text{K}^{-1}\right]/\left[\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \tau$ |
thermal resistivity |
$0.000185422719524(28)$
$\left[\text{K} \cdot \text{m} \cdot
\text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-1}\text{T}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-2}2^{-1}$ |
thermal resistance |
$3.5039815718342(67)
\times 10^{6}$ $\left[\text{K} \cdot
\text{W}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}$ |
thermal expansion |
$6.333623126911(12)
\times 10^{-6}$
$\left[\text{K}^{-1}\right]/\left[\text{T}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}$ |
lapse rate |
$2.98364156939(46)
\times 10^{15}$
$\left[\text{m}^{-1}\text{K}\right]/\left[\text{L}^{-1}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-1}\tau\cdot
2$ |
Name |
Quantity |
Product |
molar mass |
$0.00099999999966(31)$
$\left[\text{kg}\cdot
\text{mol}^{-1}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molality |
$1000.000000340000000(31)$
$\left[\text{kg}^{-1}\text{mol}\right]/\left[\mathbb{1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar amount |
$1.821876740938(53)
\times 10^{-27}$
$\left[\text{mol}\right]/\left[\text{M}\right]$ |
$\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot
2$ |
molarity |
$12294.6336558(57)$
$\left[\text{m}^{-3}\text{mol}\right]/\left[\text{M}\cdot
\text{L}^{-3}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{3}2^{4}$ |
molar volume |
$8.1336299071(37)
\times 10^{-5}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-4}$ |
molar entropy |
$7578.16908782(22)$ $\left[\text{J}
\cdot \text{K}^{-1}
\text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}2^{-1}$ |
molar energy |
$1.196498265838(35)
\times 10^{9}$ $\left[\text{J} \cdot
\text{mol}^{-1}\right]/\left[\text{L}^{2}\text{T}^{-2}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot
\mu_\text{eu}^{-1}2^{-1}$ |
molar conductivity |
$3.53505986037(55)
\times 10^{12}$ $\left[\text{S} \cdot
\text{m}^2
\text{mol}^{-1}\right]/\left[\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{-1}\text{e}^{2}\text{R}_{\infty}^{-1}\alpha\cdot
\mu_\text{eu}^{-1}2^{-3}$ |
molar susceptibility |
$8.1336299071(37)
\times 10^{-5}$
$\left[\text{m}^{3}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-4}$ |
catalysis |
$3.76594432589(11)
\times 10^{-11}$
$\left[\text{kat}\right]/\left[\text{M}\cdot
\text{T}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}\cdot
\text{R}_{\infty}\cdot \mu_\text{eu}\cdot \tau\cdot
2$ |
specificity |
$1.68127715280(77)
\times 10^{12}$
$\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]/\left[\text{M}^{-1}\text{L}^{3}\text{T}^{-1}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-2}2^{-4}$ |
diffusion flux |
$3.14747161122(97)
\times 10^{-23}$
$\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]/\left[\text{M}\cdot
\text{L}^{-2}\text{T}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}\cdot \tau\cdot
2^{3}$ |
|
Unified |
Rydberg |
SI2019 |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{T}$ |
$\text{s}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{T}$ |
$\text{s}$ |
length |
$\text{L}$ |
$\text{a}_0$ |
$\text{m}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{a}_0$ |
$\text{m}$ |
area |
$\text{L}^{2}$ |
$\text{a}_0^2$ |
$\text{m}^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{a}_0^2$ |
$\text{m}^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{a}_0^3$ |
$\text{m}^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{a}_0^{-1}$ |
$\text{m}^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{a}_0^{-1}$ |
$\text{m}^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{a}_0^{-2}$ |
$\text{m}^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{a}_0^{-3}$ |
$\text{m}^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{a}_0^2$ |
$\text{m}^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{T}^{-1}$ |
$\text{Hz}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
|
Unified |
Rydberg |
SI2019 |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{M}$ |
$\text{kg}$ |
mass |
$\text{M}$ |
$\text{M}$ |
$\text{kg}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
force |
$\text{F}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
$\text{N}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-2}$ |
$\text{Pa}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{M}^{-1}\text{L}\cdot
\text{T}^{2}$ |
$\text{Pa}^{-1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{Pa} \cdot
\text{s}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
$\text{J}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{M}\cdot
\text{T}^{-2}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{W}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{T}^{-3}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-3}$ |
$\text{W}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{M}^{2}\text{L}^{-2}\text{T}^{-3}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{M}\cdot
\text{L}^{-4}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{M}^{-1}\text{L}^{4}\text{T}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
|
Unified |
Rydberg |
SI2019 |
charge |
$\text{Q}$ |
$\text{Q}$ |
$\text{C}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{4}\text{T}^{-3}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-2}$ |
$\Omega$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}\text{Q}^{2}$ |
$\text{F}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{M}^{-1}\text{L}^{-2}\text{Q}^{2}$ |
$\text{H}^{-1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{M}^{-1}\text{L}^{-3}\text{T}^{2}\text{Q}^{2}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{M}\cdot
\text{L}\cdot \text{Q}^{-2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{V}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{L}^{-1}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{L}^{-2}\text{Q}$ |
$\text{m}^{-2}\text{C}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{T}^{-1}\text{Q}^{-1}$ |
$\text{T}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}\text{Q}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{M}^{-1}\text{T}^{2}\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{a}_0^3$ |
$\text{m}^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{M}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{Wb} \cdot
\text{m}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{L}^{-3}\text{T}\cdot \text{Q}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{L}\cdot
\text{T}^{-1}\text{Q}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
|
Unified |
Rydberg |
SI2019 |
temperature |
$\Theta$ |
$\text{T}^{-1}$ |
$\text{K}$ |
entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1}$ |
specific entropy |
$\text{F}\cdot
\text{M}^{-1}\text{L}\cdot \Theta^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}$ |
volume heat capacity |
$\text{F}\cdot
\text{L}^{-2}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ |
thermal conductivity |
$\text{F}\cdot
\text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-2}$ |
$\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}$ |
thermal conductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\Theta^{-1}$ |
$\text{M}\cdot
\text{L}^{2}\text{T}^{-2}$ |
$\text{W} \cdot
\text{K}^{-1}$ |
thermal resistivity |
$\text{F}^{-1}\text{T}\cdot \Theta$ |
$\text{M}^{-1}\text{L}^{-1}\text{T}^{2}$ |
$\text{K} \cdot
\text{m} \cdot \text{W}^{-1}$ |
thermal resistance |
$\text{F}^{-1}\text{L}^{-1}\text{T}\cdot
\Theta$ |
$\text{M}^{-1}\text{L}^{-2}\text{T}^{2}$ |
$\text{K} \cdot
\text{W}^{-1}$ |
thermal expansion |
$\Theta^{-1}$ |
$\text{T}$ |
$\text{K}^{-1}$ |
lapse rate |
$\text{L}^{-1}\Theta$ |
$\text{L}^{-1}\text{T}^{-1}$ |
$\text{m}^{-1}\text{K}$ |
|
Unified |
Rydberg |
SI2019 |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\mathbb{1}$ |
$\text{kg}^{-1}\text{mol}$ |
molar amount |
$\text{N}$ |
$\text{M}$ |
$\text{mol}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{m}^{-3}\text{mol}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{L}^{2}\text{T}^{-2}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{M}^{-2}\text{L}^{-1}\text{T}\cdot
\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{kat}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{M}^{-1}\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{M}\cdot
\text{L}^{-2}\text{T}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |