Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$4.1341373335183(79)
\times 10^{16}$
$\left[\text{a}_0^{2}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau\cdot 2$ |
angular time |
$4.1341373335183(79)
\times 10^{16}$
$\left[\text{a}_0^{2}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \tau\cdot 2$ |
length |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{a}_0\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
angular length |
$1.88972612463(29)
\times 10^{10}$
$\left[\text{a}_0\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot
2$ |
area |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
angular area |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
volume |
$6.7483344946(31)
\times 10^{30}$
$\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
wavenumber |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
angular wavenumber |
$5.29177210902(81)
\times 10^{-11}$
$\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
fuel efficiency |
$2.80028520538(86)
\times 10^{-21}$
$\left[\text{a}_0^{-2}\right]/\left[\text{m}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
number density |
$1.48184711472(68)
\times 10^{-31}$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
frequency |
$2.4188843265857(46)
\times 10^{-17}$
$\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
angular frequency |
$2.4188843265857(46)
\times 10^{-17}$
$\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
frequency drift |
$5.851001385402(22)
\times 10^{-34}$
$\left[\text{a}_0^{-4}\right]/\left[\text{Hz}
\cdot \text{s}^{-1}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-2}2^{-2}$ |
stagnance |
$2.18769126364(34)
\times 10^{6}$
$\left[\text{a}_0\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}\cdot
\alpha$ |
speed |
$4.57102890440(70)
\times 10^{-7}$
$\left[\text{a}_0^{-1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}\alpha^{-1}$ |
acceleration |
$1.10567901732(17)
\times 10^{-23}$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-1}$ |
jerk |
$2.67450964524(41)
\times 10^{-40}$
$\left[\text{a}_0^{-5}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{-1}\tau^{-2}2^{-2}$ |
snap |
$6.46932946217(99)
\times 10^{-57}$
$\left[\text{a}_0^{-7}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{-1}\tau^{-3}2^{-3}$ |
crackle |
$1.56485596396(24)
\times 10^{-73}$
$\left[\text{a}_0^{-9}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{-1}\tau^{-4}2^{-4}$ |
pop |
$3.78520556458(58)
\times 10^{-90}$
$\left[\text{a}_0^{-11}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{-1}\tau^{-5}2^{-5}$ |
volume flow |
$1.63234405396(75)
\times 10^{14}$
$\left[\text{a}_0\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{2}$ |
etendue |
$3.5710648261(11)
\times 10^{20}$
$\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$ |
photon intensity |
$2.4188843265857(46)
\times 10^{-17}$
$\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
photon irradiance |
$0.000115767636121(35)$
$\left[\mathbb{1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
photon radiance |
$0.000115767636121(35)$
$\left[\mathbb{1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
inertia |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass flow |
$2.65537648411(81)
\times 10^{13}$
$\left[\text{a}_0^{-2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$ |
linear density |
$5.8091439360(27)
\times 10^{19}$
$\left[\text{a}_0^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-1}2^{-2}$ |
area density |
$3.0740665858(19)
\times 10^{9}$
$\left[\text{a}_0^{-2}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-3}\alpha^{4}\tau^{-2}2^{-3}$ |
density |
$0.16267259820(12)$
$\left[\text{a}_0^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$ |
specific weight |
$1.7986367852(11)
\times 10^{-24}$
$\left[\text{a}_0^{-6}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{4}\tau^{-4}2^{-5}$ |
specific volume |
$6.1473168258(47)$
$\left[\text{a}_0^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$ |
force |
$1.21378026609(19)
\times 10^{7}$
$\left[\text{a}_0^{-3}\right]/\left[\text{N}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-2}$ |
specific force |
$1.10567901732(17)
\times 10^{-23}$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$3.3989309217(16)
\times 10^{-14}$
$\left[\text{a}_0^{-5}\right]/\left[\text{Pa}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-4}$ |
compressibility |
$2.9421015697(14)
\times 10^{13}$
$\left[\text{a}_0^{5}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{4}$ |
viscosity |
$1405.16472176(65)$
$\left[\text{a}_0^{-3}\right]/\left[\text{Pa}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-2}2^{-3}$ |
diffusivity |
$8637.9927371(26)$
$\left[\mathbb{1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
rotational inertia |
$3.9202046407288(75)
\times 10^{50}$
$\left[\text{a}_0^{2}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot
\tau^{2}2$ |
impulse |
$5.01793431275(77)
\times 10^{23}$
$\left[\text{a}_0^{-1}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
2^{-1}$ |
momentum |
$5.01793431275(77)
\times 10^{23}$
$\left[\text{a}_0^{-1}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
2^{-1}$ |
angular momentum |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
yank |
$2.93599406157(45)
\times 10^{-10}$
$\left[\text{a}_0^{-5}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot
\tau^{-2}2^{-3}$ |
energy |
$2.2937122783963(44)
\times 10^{17}$
$\left[\text{a}_0^{-2}\right]/\left[\text{J}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}2^{-1}$ |
specific energy |
$2.08943052449(64)
\times 10^{-13}$
$\left[\text{a}_0^{-2}\right]/\left[\text{J}
\cdot \text{kg}^{-1}\right]$ |
$\text{c}^{-2}\alpha^{-2}$ |
action |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
fluence |
$0.00064230485586(20)$
$\left[\text{a}_0^{-4}\right]/\left[\text{N}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$ |
power |
$5.548224679910(21)$
$\left[\text{a}_0^{-4}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$ |
power density |
$8.2216207337(38)
\times 10^{-31}$
$\left[\text{a}_0^{-7}\right]/\left[\text{W}
\cdot \text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{3}\tau^{-4}2^{-5}$ |
irradiance |
$1.55366114873(48)
\times 10^{-20}$
$\left[\text{a}_0^{-6}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$ |
radiance |
$1.55366114873(48)
\times 10^{-20}$
$\left[\text{a}_0^{-6}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$ |
radiant intensity |
$5.548224679910(21)$
$\left[\text{a}_0^{-4}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$ |
spectral flux |
$2.93599406157(45)
\times 10^{-10}$
$\left[\text{a}_0^{-5}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot
\tau^{-2}2^{-3}$ |
spectral exposure |
$2.65537648411(81)
\times 10^{13}$
$\left[\text{a}_0^{-2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$ |
sound exposure |
$4.7760578229(44)
\times 10^{-11}$
$\left[\text{a}_0^{-8}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{6}\tau^{-5}2^{-7}$ |
impedance |
$2.0822392886(19)
\times 10^{-28}$
$\left[\text{a}_0^{-6}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$ |
specific impedance |
$7.4358114832(46)
\times 10^{-8}$
$\left[\text{a}_0^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{4}\tau^{-3}2^{-4}$ |
admittance |
$4.8025220034(44)
\times 10^{27}$
$\left[\text{a}_0^{6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$ |
compliance |
$1556.89310283(48)$
$\left[\text{a}_0^{4}\right]/\left[\text{m} \cdot
\text{N}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$ |
inertance |
$8.6082631805(79)
\times 10^{-12}$
$\left[\text{a}_0^{-4}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-5}\alpha^{6}\tau^{-4}2^{-5}$ |
Name |
Quantity |
Product |
charge |
$6.241509074460763
\times 10^{18}$
$\left[\text{e}\right]/\left[\text{C}\right]$ |
$\text{e}^{-1}$ |
charge density |
$9.2489622135(43)
\times 10^{-13}$
$\left[\text{a}_0^{-3}\text{e}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
linear charge
density |
$3.30286436384(51)
\times 10^{8}$
$\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-1}2^{-1}$ |
exposure |
$5.6856301036(17)
\times 10^{-12}$
$\left[\text{e}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
mobility |
$317.440378046(97)$
$\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{m}^2
\text{s}^{-1} \text{V}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{e}\cdot
\alpha^{-2}\tau$ |
current |
$150.974884744550(29)$
$\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
current density |
$4.2277273613(13)
\times 10^{-19}$
$\left[\text{a}_0^{-4}\text{e}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-3}2^{-3}$ |
resistance |
$0.00024341348057879472$
$\left[\text{e}^{-2}\right]/\left[\Omega\right]$ |
$\hbar^{-1}\text{e}^{2}\tau$ |
conductance |
$4108.2359022276605$
$\left[\text{e}^{2}\right]/\left[\text{S}\right]$ |
$\hbar\cdot
\text{e}^{-2}\tau^{-1}$ |
resistivity |
$4.59984813336(70)
\times 10^{6}$ $\left[\text{a}_0\cdot
\text{e}^{-2}\right]/\left[\Omega \cdot
\text{m}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-1}\tau^{2}2$ |
conductivity |
$2.17398481647(33)
\times 10^{-7}$
$\left[\text{a}_0^{-1}\text{e}^{2}\right]/\left[\text{S}
\cdot \text{m}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot
\tau^{-2}2^{-1}$ |
capacitance |
$1.6984011418300(33)
\times 10^{20}$
$\left[\text{a}_0^{2}\text{e}^{2}\right]/\left[\text{F}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot
2$ |
inductance |
$1.0063047575424(19)
\times 10^{13}$
$\left[\text{a}_0^{2}\text{e}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\tau^{2}2$ |
reluctance |
$9.937347433815(19)
\times 10^{-14}$
$\left[\text{a}_0^{-2}\text{e}^{2}\right]/\left[\text{H}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$ |
permeance |
$1.0063047575424(19)
\times 10^{13}$
$\left[\text{a}_0^{2}\text{e}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\tau^{2}2$ |
permittivity |
$8.9875517923(14)
\times 10^{9}$ $\left[\text{a}_0\cdot
\text{e}^{2}\right]/\left[\text{F} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
permeability |
$532.513544914(82)$
$\left[\text{a}_0\cdot
\text{e}^{-2}\right]/\left[\text{H} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha\cdot
\tau$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$6.1473168258(47)$
$\left[\text{a}_0^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$80396.171068(12)$
$\left[\text{a}_0^{-1}\text{e}^{-1}\right]/\left[\text{Wb}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$ |
electric potential |
$0.036749322175654(70)$
$\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{V}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}2^{-1}$ |
magnetic potential |
$150.974884744550(29)$
$\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
electric field |
$1.94469038115(30)
\times 10^{-12}$
$\left[\text{a}_0^{-3}\text{e}^{-1}\right]/\left[\text{V}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-2}$ |
magnetic field |
$7.9892468425(12)
\times 10^{-9}$
$\left[\text{a}_0^{-3}\text{e}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-2}2^{-2}$ |
electric flux |
$6.9446154178(11)
\times 10^{8}$
$\left[\text{a}_0^{-1}\text{e}^{-1}\right]/\left[\text{V}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\alpha^{-1}\tau$ |
magnetic flux |
$1.519267447878626
\times 10^{15}$
$\left[\text{e}^{-1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1}\text{e}\cdot \tau$ |
electric
displacement |
$0.0174780055205(54)$
$\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$ |
magnetic flux
density |
$4.2543821573(13)
\times 10^{-6}$
$\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{T}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$ |
electric dipole
moment |
$1.17947427551(18)
\times 10^{29}$ $\left[\text{a}_0\cdot
\text{e}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-1}\tau\cdot 2$ |
magnetic dipole
moment |
$5.3914110054(17)
\times 10^{22}$
$\left[\text{e}\right]/\left[\text{J} \cdot
\text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
electric
polarizability |
$6.0651005782(19)
\times 10^{40}$
$\left[\text{a}_0^{4}\text{e}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$ |
magnetic
polarizability |
$6.7483344946(31)
\times 10^{30}$
$\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$ |
magnetic moment |
$2.87099938655(44)
\times 10^{25}$ $\left[\text{a}_0\cdot
\text{e}^{-1}\right]/\left[\text{Wb} \cdot
\text{m}\right]$ |
$\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-1}\tau^{2}2$ |
specific
magnetization |
$38236.479983(18)$
$\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-2}$ |
pole strength |
$2.85301183865(44)
\times 10^{12}$
$\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\alpha^{-1}$ |
Name |
Quantity |
Product |
temperature |
$3.1668115634555(61)
\times 10^{-6}$
$\left[\text{a}_0^{-2}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}2^{-1}$ |
entropy |
$7.24297051603992
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}$ |
specific entropy |
$6.5978997570(20)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
volume heat capacity |
$1.07329749612(49)
\times 10^{-8}$
$\left[\text{a}_0^{-3}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$ |
thermal conductivity |
$9.2711359762(14)
\times 10^{-5}$
$\left[\text{a}_0^{-3}\right]/\left[\text{W}
\cdot \text{m}^{-1} \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-2}2^{-2}$ |
thermal conductance |
$1.7519907859171(34)
\times 10^{6}$
$\left[\text{a}_0^{-2}\right]/\left[\text{W}
\cdot \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$ |
thermal resistivity |
$10786.1647437(17)$
$\left[\text{a}_0^{3}\right]/\left[\text{K} \cdot
\text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2^{2}$ |
thermal resistance |
$5.707792575385(11)
\times 10^{-7}$
$\left[\text{a}_0^{2}\right]/\left[\text{K} \cdot
\text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \tau\cdot 2$ |
thermal expansion |
$315775.02480407(60)$
$\left[\text{a}_0^{2}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot 2$ |
lapse rate |
$1.67580451060(26)
\times 10^{-16}$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot
\tau^{-1}2^{-2}$ |
Name |
Quantity |
Product |
molar mass |
$1000.000000340000000(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molality |
$0.00099999999966(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount |
$1.097769105373(32)
\times 10^{27}$
$\left[\mathbb{1}\right]/\left[\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}$ |
molarity |
$0.000162672598142(75)$
$\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar volume |
$6147.3168279(28)$
$\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
molar entropy |
$6.59789975924(19)
\times 10^{-5}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molar energy |
$2.089430525207(61)
\times 10^{-10}$
$\left[\text{a}_0^{-2}\right]/\left[\text{J}
\cdot \text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}\cdot
2^{-1}$ |
molar conductivity |
$7.0720160301(11)
\times 10^{-14}$ $\left[\text{a}_0\cdot
\text{e}^{2}\right]/\left[\text{S} \cdot \text{m}^2
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\mu_\text{eu}\cdot 2$ |
molar susceptibility |
$6147.3168279(28)$
$\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
catalysis |
$2.655376483198(77)
\times 10^{10}$
$\left[\text{a}_0^{-2}\right]/\left[\text{kat}\right]$ |
$\text{N}_\text{A}\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
specificity |
$1.48696483256(68)
\times 10^{-13}$
$\left[\text{a}_0\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\mu_\text{eu}\cdot
\tau^{2}2^{2}$ |
diffusion flux |
$1.27086134335(39)
\times 10^{23}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
|
Unified |
SI2019 |
Hartree |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{a}_0^{2}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{a}_0^{2}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{a}_0$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{a}_0$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{a}_0^{2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{a}_0^{2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{a}_0^{3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{a}_0^{-1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{a}_0^{-1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{a}_0^{-2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{a}_0^{-3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{a}_0^{-2}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{a}_0^{-2}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{a}_0^{-4}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\text{a}_0$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\text{a}_0^{-1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{a}_0^{-3}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{a}_0^{-5}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{a}_0^{-7}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{a}_0^{-9}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{a}_0^{-11}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{a}_0$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{a}_0^{2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{a}_0^{-2}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
|
Unified |
SI2019 |
Hartree |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{a}_0^{-2}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{a}_0^{-1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{a}_0^{-2}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{a}_0^{-3}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{a}_0^{-6}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{a}_0^{3}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{a}_0^{-3}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{a}_0^{-3}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{a}_0^{-5}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{a}_0^{5}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{a}_0^{-3}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\mathbb{1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{a}_0^{2}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\text{a}_0^{-1}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\text{a}_0^{-1}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{a}_0^{-5}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\text{a}_0^{-2}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\text{a}_0^{-2}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{a}_0^{-4}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{a}_0^{-4}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{a}_0^{-7}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{a}_0^{-6}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{a}_0^{-6}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{a}_0^{-4}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{a}_0^{-5}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{a}_0^{-2}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{a}_0^{-8}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{a}_0^{-6}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{a}_0^{-4}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{a}_0^{6}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{a}_0^{4}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{a}_0^{-4}$ |
|
Unified |
SI2019 |
Hartree |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{e}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{a}_0^{-3}\text{e}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{a}_0^{-1}\text{e}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{e}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{a}_0^{-2}\text{e}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{a}_0^{-2}\text{e}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{a}_0^{-4}\text{e}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{e}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{e}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{a}_0\cdot
\text{e}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{a}_0^{-1}\text{e}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{a}_0^{2}\text{e}^{2}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{a}_0^{2}\text{e}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{a}_0^{-2}\text{e}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{a}_0^{2}\text{e}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{a}_0\cdot
\text{e}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{a}_0\cdot
\text{e}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{a}_0^{3}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{a}_0^{-1}\text{e}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{a}_0^{-2}\text{e}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{a}_0^{-2}\text{e}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{a}_0^{-3}\text{e}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{a}_0^{-3}\text{e}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{a}_0^{-1}\text{e}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{e}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{a}_0^{-2}\text{e}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{a}_0^{-2}\text{e}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{a}_0\cdot
\text{e}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{e}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{a}_0^{4}\text{e}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{a}_0^{3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{a}_0\cdot
\text{e}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{a}_0^{-1}\text{e}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{a}_0^{-1}\text{e}$ |
|
Unified |
SI2019 |
Hartree |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\mathbb{1}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{a}_0^{-3}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{a}_0^{3}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\mathbb{1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\text{a}_0^{-2}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{a}_0\cdot
\text{e}^{2}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{a}_0^{3}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{a}_0^{-2}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{a}_0$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\mathbb{1}$ |