SI2019 -> Hartree

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $4.1341373335183(79) \times 10^{16}$ $\left[\text{a}_0^{2}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
angular time $4.1341373335183(79) \times 10^{16}$ $\left[\text{a}_0^{2}\right]/\left[\text{s}\right]$ $\text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
length $1.88972612463(29) \times 10^{10}$ $\left[\text{a}_0\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
angular length $1.88972612463(29) \times 10^{10}$ $\left[\text{a}_0\right]/\left[\text{m}\right]$ $\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
area $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
angular area $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
volume $6.7483344946(31) \times 10^{30}$ $\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
wavenumber $5.29177210902(81) \times 10^{-11}$ $\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
angular wavenumber $5.29177210902(81) \times 10^{-11}$ $\left[\text{a}_0^{-1}\right]/\left[\text{m}^{-1}\right]$ $\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
fuel efficiency $2.80028520538(86) \times 10^{-21}$ $\left[\text{a}_0^{-2}\right]/\left[\text{m}^{-2}\right]$ $\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
number density $1.48184711472(68) \times 10^{-31}$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\right]$ $\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
frequency $2.4188843265857(46) \times 10^{-17}$ $\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
angular frequency $2.4188843265857(46) \times 10^{-17}$ $\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
frequency drift $5.851001385402(22) \times 10^{-34}$ $\left[\text{a}_0^{-4}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-2}2^{-2}$
stagnance $2.18769126364(34) \times 10^{6}$ $\left[\text{a}_0\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}\cdot \alpha$
speed $4.57102890440(70) \times 10^{-7}$ $\left[\text{a}_0^{-1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}\alpha^{-1}$
acceleration $1.10567901732(17) \times 10^{-23}$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-1}$
jerk $2.67450964524(41) \times 10^{-40}$ $\left[\text{a}_0^{-5}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{-1}\tau^{-2}2^{-2}$
snap $6.46932946217(99) \times 10^{-57}$ $\left[\text{a}_0^{-7}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{-1}\tau^{-3}2^{-3}$
crackle $1.56485596396(24) \times 10^{-73}$ $\left[\text{a}_0^{-9}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{-1}\tau^{-4}2^{-4}$
pop $3.78520556458(58) \times 10^{-90}$ $\left[\text{a}_0^{-11}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{-1}\tau^{-5}2^{-5}$
volume flow $1.63234405396(75) \times 10^{14}$ $\left[\text{a}_0\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\tau^{2}2^{2}$
etendue $3.5710648261(11) \times 10^{20}$ $\left[\text{a}_0^{2}\right]/\left[\text{m}^{2}\right]$ $\text{R}_{\infty}^{2}\alpha^{-2}\tau^{2}2^{2}$
photon intensity $2.4188843265857(46) \times 10^{-17}$ $\left[\text{a}_0^{-2}\right]/\left[\text{Hz}\right]$ $\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
photon irradiance $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$
photon radiance $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$
mass flow $2.65537648411(81) \times 10^{13}$ $\left[\text{a}_0^{-2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$
linear density $5.8091439360(27) \times 10^{19}$ $\left[\text{a}_0^{-1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{3}\tau^{-1}2^{-2}$
area density $3.0740665858(19) \times 10^{9}$ $\left[\text{a}_0^{-2}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{4}\tau^{-2}2^{-3}$
density $0.16267259820(12)$ $\left[\text{a}_0^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{5}\tau^{-3}2^{-4}$
specific weight $1.7986367852(11) \times 10^{-24}$ $\left[\text{a}_0^{-6}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{4}\tau^{-4}2^{-5}$
specific volume $6.1473168258(47)$ $\left[\text{a}_0^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$
force $1.21378026609(19) \times 10^{7}$ $\left[\text{a}_0^{-3}\right]/\left[\text{N}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-2}$
specific force $1.10567901732(17) \times 10^{-23}$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{-1}\tau^{-1}2^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $3.3989309217(16) \times 10^{-14}$ $\left[\text{a}_0^{-5}\right]/\left[\text{Pa}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{3}\tau^{-3}2^{-4}$
compressibility $2.9421015697(14) \times 10^{13}$ $\left[\text{a}_0^{5}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-3}\tau^{3}2^{4}$
viscosity $1405.16472176(65)$ $\left[\text{a}_0^{-3}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-2}2^{-3}$
diffusivity $8637.9927371(26)$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
rotational inertia $3.9202046407288(75) \times 10^{50}$ $\left[\text{a}_0^{2}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \tau^{2}2$
impulse $5.01793431275(77) \times 10^{23}$ $\left[\text{a}_0^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
momentum $5.01793431275(77) \times 10^{23}$ $\left[\text{a}_0^{-1}\right]/\left[\text{N} \cdot \text{s}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $2.93599406157(45) \times 10^{-10}$ $\left[\text{a}_0^{-5}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot \tau^{-2}2^{-3}$
energy $2.2937122783963(44) \times 10^{17}$ $\left[\text{a}_0^{-2}\right]/\left[\text{J}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}2^{-1}$
specific energy $2.08943052449(64) \times 10^{-13}$ $\left[\text{a}_0^{-2}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}\alpha^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $0.00064230485586(20)$ $\left[\text{a}_0^{-4}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$
power $5.548224679910(21)$ $\left[\text{a}_0^{-4}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$
power density $8.2216207337(38) \times 10^{-31}$ $\left[\text{a}_0^{-7}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{3}\tau^{-4}2^{-5}$
irradiance $1.55366114873(48) \times 10^{-20}$ $\left[\text{a}_0^{-6}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$
radiance $1.55366114873(48) \times 10^{-20}$ $\left[\text{a}_0^{-6}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$
radiant intensity $5.548224679910(21)$ $\left[\text{a}_0^{-4}\right]/\left[\text{W}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$
spectral flux $2.93599406157(45) \times 10^{-10}$ $\left[\text{a}_0^{-5}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha\cdot \tau^{-2}2^{-3}$
spectral exposure $2.65537648411(81) \times 10^{13}$ $\left[\text{a}_0^{-2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$
sound exposure $4.7760578229(44) \times 10^{-11}$ $\left[\text{a}_0^{-8}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{6}\tau^{-5}2^{-7}$
impedance $2.0822392886(19) \times 10^{-28}$ $\left[\text{a}_0^{-6}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{6}\tau^{-5}2^{-6}$
specific impedance $7.4358114832(46) \times 10^{-8}$ $\left[\text{a}_0^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{4}\tau^{-3}2^{-4}$
admittance $4.8025220034(44) \times 10^{27}$ $\left[\text{a}_0^{6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-6}\tau^{5}2^{6}$
compliance $1556.89310283(48)$ $\left[\text{a}_0^{4}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$
inertance $8.6082631805(79) \times 10^{-12}$ $\left[\text{a}_0^{-4}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{6}\tau^{-4}2^{-5}$

Electromagnetic Ratios

Name Quantity Product
charge $6.241509074460763 \times 10^{18}$ $\left[\text{e}\right]/\left[\text{C}\right]$ $\text{e}^{-1}$
charge density $9.2489622135(43) \times 10^{-13}$ $\left[\text{a}_0^{-3}\text{e}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
linear charge density $3.30286436384(51) \times 10^{8}$ $\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-1}2^{-1}$
exposure $5.6856301036(17) \times 10^{-12}$ $\left[\text{e}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
mobility $317.440378046(97)$ $\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-2}\tau$
current $150.974884744550(29)$ $\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
current density $4.2277273613(13) \times 10^{-19}$ $\left[\text{a}_0^{-4}\text{e}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-3}2^{-3}$
resistance $0.00024341348057879472$ $\left[\text{e}^{-2}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\tau$
conductance $4108.2359022276605$ $\left[\text{e}^{2}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\tau^{-1}$
resistivity $4.59984813336(70) \times 10^{6}$ $\left[\text{a}_0\cdot \text{e}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-1}\tau^{2}2$
conductivity $2.17398481647(33) \times 10^{-7}$ $\left[\text{a}_0^{-1}\text{e}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha\cdot \tau^{-2}2^{-1}$
capacitance $1.6984011418300(33) \times 10^{20}$ $\left[\text{a}_0^{2}\text{e}^{2}\right]/\left[\text{F}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot 2$
inductance $1.0063047575424(19) \times 10^{13}$ $\left[\text{a}_0^{2}\text{e}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \tau^{2}2$
reluctance $9.937347433815(19) \times 10^{-14}$ $\left[\text{a}_0^{-2}\text{e}^{2}\right]/\left[\text{H}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\tau^{-2}2^{-1}$
permeance $1.0063047575424(19) \times 10^{13}$ $\left[\text{a}_0^{2}\text{e}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \tau^{2}2$
permittivity $8.9875517923(14) \times 10^{9}$ $\left[\text{a}_0\cdot \text{e}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
permeability $532.513544914(82)$ $\left[\text{a}_0\cdot \text{e}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha\cdot \tau$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $6.1473168258(47)$ $\left[\text{a}_0^{3}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-5}\tau^{3}2^{4}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $80396.171068(12)$ $\left[\text{a}_0^{-1}\text{e}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha\cdot 2^{-1}$
electric potential $0.036749322175654(70)$ $\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{V}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}2^{-1}$
magnetic potential $150.974884744550(29)$ $\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
electric field $1.94469038115(30) \times 10^{-12}$ $\left[\text{a}_0^{-3}\text{e}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-2}$
magnetic field $7.9892468425(12) \times 10^{-9}$ $\left[\text{a}_0^{-3}\text{e}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-2}2^{-2}$
electric flux $6.9446154178(11) \times 10^{8}$ $\left[\text{a}_0^{-1}\text{e}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1}\tau$
magnetic flux $1.519267447878626 \times 10^{15}$ $\left[\text{e}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \tau$
electric displacement $0.0174780055205(54)$ $\left[\text{a}_0^{-2}\text{e}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{2}\tau^{-2}2^{-2}$
magnetic flux density $4.2543821573(13) \times 10^{-6}$ $\left[\text{a}_0^{-2}\text{e}^{-1}\right]/\left[\text{T}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{2}\tau^{-1}2^{-2}$
electric dipole moment $1.17947427551(18) \times 10^{29}$ $\left[\text{a}_0\cdot \text{e}\right]/\left[\text{m}\cdot \text{C}\right]$ $\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-1}\tau\cdot 2$
magnetic dipole moment $5.3914110054(17) \times 10^{22}$ $\left[\text{e}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$
electric polarizability $6.0651005782(19) \times 10^{40}$ $\left[\text{a}_0^{4}\text{e}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-2}\tau^{2}2^{3}$
magnetic polarizability $6.7483344946(31) \times 10^{30}$ $\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\right]$ $\text{R}_{\infty}^{3}\alpha^{-3}\tau^{3}2^{3}$
magnetic moment $2.87099938655(44) \times 10^{25}$ $\left[\text{a}_0\cdot \text{e}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-1}\tau^{2}2$
specific magnetization $38236.479983(18)$ $\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{3}\tau^{-2}2^{-2}$
pole strength $2.85301183865(44) \times 10^{12}$ $\left[\text{a}_0^{-1}\text{e}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{-1}$

Thermodynamic Ratios

Name Quantity Product
temperature $3.1668115634555(61) \times 10^{-6}$ $\left[\text{a}_0^{-2}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}2^{-1}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $6.5978997570(20) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$
volume heat capacity $1.07329749612(49) \times 10^{-8}$ $\left[\text{a}_0^{-3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{3}\tau^{-3}2^{-3}$
thermal conductivity $9.2711359762(14) \times 10^{-5}$ $\left[\text{a}_0^{-3}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-2}2^{-2}$
thermal conductance $1.7519907859171(34) \times 10^{6}$ $\left[\text{a}_0^{-2}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\tau^{-1}2^{-1}$
thermal resistivity $10786.1647437(17)$ $\left[\text{a}_0^{3}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-1}\tau^{2}2^{2}$
thermal resistance $5.707792575385(11) \times 10^{-7}$ $\left[\text{a}_0^{2}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \tau\cdot 2$
thermal expansion $315775.02480407(60)$ $\left[\text{a}_0^{2}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot 2$
lapse rate $1.67580451060(26) \times 10^{-16}$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha\cdot \tau^{-1}2^{-2}$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $1.097769105373(32) \times 10^{27}$ $\left[\mathbb{1}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$
molarity $0.000162672598142(75)$ $\left[\text{a}_0^{-3}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{3}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$
molar volume $6147.3168279(28)$ $\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot \tau^{3}2^{3}$
molar entropy $6.59789975924(19) \times 10^{-5}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$
molar energy $2.089430525207(61) \times 10^{-10}$ $\left[\text{a}_0^{-2}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}\cdot 2^{-1}$
molar conductivity $7.0720160301(11) \times 10^{-14}$ $\left[\text{a}_0\cdot \text{e}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}\mu_\text{eu}\cdot 2$
molar susceptibility $6147.3168279(28)$ $\left[\text{a}_0^{3}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-3}\mu_\text{eu}\cdot \tau^{3}2^{3}$
catalysis $2.655376483198(77) \times 10^{10}$ $\left[\text{a}_0^{-2}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$
specificity $1.48696483256(68) \times 10^{-13}$ $\left[\text{a}_0\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-3}\mu_\text{eu}\cdot \tau^{2}2^{2}$
diffusion flux $1.27086134335(39) \times 10^{23}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$

Photometric Ratios

Name Quantity Product
luminous flux $0.008123081604248(31)$ $\left[\text{a}_0^{-4}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$
luminous intensity $0.008123081604248(31)$ $\left[\text{a}_0^{-4}\right]/\left[\text{cd}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\tau^{-1}2^{-2}$
luminance $2.27469452385(70) \times 10^{-23}$ $\left[\text{a}_0^{-6}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$
illuminance $2.27469452385(70) \times 10^{-23}$ $\left[\text{a}_0^{-6}\right]/\left[\text{lx}\right]$ $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{2}\tau^{-3}2^{-4}$
luminous energy $3.3581934923336(64) \times 10^{14}$ $\left[\text{a}_0^{-2}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}2^{-1}$
luminous exposure $9.4038995534(29) \times 10^{-7}$ $\left[\text{a}_0^{-4}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{2}\tau^{-2}2^{-3}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 Hartree
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{a}_0^{2}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{a}_0^{2}$
length $\text{L}$ $\text{m}$ $\text{a}_0$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{a}_0$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{a}_0^{2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{a}_0^{2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{a}_0^{3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{a}_0^{-1}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{a}_0^{-1}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{a}_0^{-2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{a}_0^{-3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{a}_0^{-2}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{a}_0^{-2}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{a}_0^{-4}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\text{a}_0$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\text{a}_0^{-1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{a}_0^{-3}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{a}_0^{-5}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{a}_0^{-7}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{a}_0^{-9}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{a}_0^{-11}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{a}_0$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{a}_0^{2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{a}_0^{-2}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\mathbb{1}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\mathbb{1}$

Mechanical

Unified SI2019 Hartree
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\mathbb{1}$
mass $\text{M}$ $\text{kg}$ $\mathbb{1}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{a}_0^{-2}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{a}_0^{-1}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{a}_0^{-2}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{a}_0^{-3}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{a}_0^{-6}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{a}_0^{3}$
force $\text{F}$ $\text{N}$ $\text{a}_0^{-3}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{a}_0^{-3}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{a}_0^{-5}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{a}_0^{5}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{a}_0^{-3}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\mathbb{1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{a}_0^{2}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{a}_0^{-1}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{a}_0^{-1}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{a}_0^{-5}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{a}_0^{-2}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\text{a}_0^{-2}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{a}_0^{-4}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{a}_0^{-4}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{a}_0^{-7}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{a}_0^{-6}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{a}_0^{-6}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{a}_0^{-4}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{a}_0^{-5}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{a}_0^{-2}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{a}_0^{-8}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{a}_0^{-6}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{a}_0^{-4}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{a}_0^{6}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{a}_0^{4}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{a}_0^{-4}$

Electromagnetic

Unified SI2019 Hartree
charge $\text{Q}$ $\text{C}$ $\text{e}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{a}_0^{-3}\text{e}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{a}_0^{-1}\text{e}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{e}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{a}_0^{-2}\text{e}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{a}_0^{-2}\text{e}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{a}_0^{-4}\text{e}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{e}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{e}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{a}_0\cdot \text{e}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{a}_0^{-1}\text{e}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{a}_0^{2}\text{e}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{a}_0^{2}\text{e}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{a}_0^{-2}\text{e}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{a}_0^{2}\text{e}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{a}_0\cdot \text{e}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{a}_0\cdot \text{e}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{a}_0^{3}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{a}_0^{-1}\text{e}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{a}_0^{-2}\text{e}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{a}_0^{-2}\text{e}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{a}_0^{-3}\text{e}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{a}_0^{-3}\text{e}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{a}_0^{-1}\text{e}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{e}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{a}_0^{-2}\text{e}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{a}_0^{-2}\text{e}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{a}_0\cdot \text{e}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{e}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{a}_0^{4}\text{e}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{a}_0^{3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{a}_0\cdot \text{e}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{a}_0^{-1}\text{e}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{a}_0^{-1}\text{e}$

Thermodynamic

Unified SI2019 Hartree
temperature $\Theta$ $\text{K}$ $\text{a}_0^{-2}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\mathbb{1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{a}_0^{-3}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{a}_0^{-3}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{a}_0^{-2}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{a}_0^{3}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{a}_0^{2}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{a}_0^{2}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{a}_0^{-3}$

Molar

Unified SI2019 Hartree
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\mathbb{1}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{a}_0^{-3}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{a}_0^{3}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\mathbb{1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\text{a}_0^{-2}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{a}_0\cdot \text{e}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{a}_0^{3}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{a}_0^{-2}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{a}_0$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\mathbb{1}$

Photometric

Unified SI2019 Hartree
luminous flux $\text{J}$ $\text{cd}$ $\text{a}_0^{-4}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{a}_0^{-4}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{a}_0^{-6}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{a}_0^{-6}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{a}_0^{-2}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{a}_0^{-4}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$