Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$7.7634407063(24)
\times 10^{20}$
$\left[\mathbb{1}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
angular time |
$7.7634407063(24)
\times 10^{20}$
$\left[\mathbb{1}\right]/\left[\text{s}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
length |
$2.58960507484(79)
\times 10^{12}$
$\left[\mathbb{1}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
angular length |
$2.58960507484(79)
\times 10^{12}$
$\left[\mathbb{1}\right]/\left[\text{m}\right]$ |
$\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
area |
$6.7060544436(41)
\times 10^{24}$
$\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
angular area |
$6.7060544436(41)
\times 10^{24}$
$\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
volume |
$1.7366032619(16)
\times 10^{37}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
wavenumber |
$3.8615926796(12)
\times 10^{-13}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular wavenumber |
$3.8615926796(12)
\times 10^{-13}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ |
$\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
fuel efficiency |
$1.49118980230(91)
\times 10^{-25}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-2}\right]$ |
$\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
number density |
$5.7583676244(53)
\times 10^{-38}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-3}\right]$ |
$\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
frequency |
$1.28808866819(39)
\times 10^{-21}$
$\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular frequency |
$1.28808866819(39)
\times 10^{-21}$
$\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
frequency drift |
$1.6591724171(10)
\times 10^{-42}$
$\left[\mathbb{1}\right]/\left[\text{Hz} \cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
stagnance |
$2.99792458 \times
10^{8}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}$ |
speed |
$3.3356409519815204
\times 10^{-9}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}$ |
acceleration |
$4.2966013114(13)
\times 10^{-30}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
jerk |
$5.5344034609(34)
\times 10^{-51}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
snap |
$7.1288023832(66)
\times 10^{-72}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
crackle |
$9.182529568(11)
\times 10^{-93}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-4}$ |
pop |
$1.1827912281(18)
\times 10^{-113}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-5}2^{-5}$ |
volume flow |
$2.2368989828(14)
\times 10^{16}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
etendue |
$6.7060544436(41)
\times 10^{24}$
$\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ |
$\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
photon intensity |
$1.28808866819(39)
\times 10^{-21}$
$\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
photon irradiance |
$0.000115767636121(35)$
$\left[\mathbb{1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
photon radiance |
$0.000115767636121(35)$
$\left[\mathbb{1}\right]/\left[\text{Hz} \cdot
\text{m}^{-2}\right]$ |
$\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
inertia |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass |
$1.09776910575(34)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{kg}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass flow |
$1.41402394541(87)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
linear density |
$4.2391371426(26)
\times 10^{17}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
area density |
$163698.20958(15)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
density |
$6.3213580777(77)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
specific weight |
$2.7160355406(42)
\times 10^{-37}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
specific volume |
$1.5819385450(19)
\times 10^{7}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
force |
$4.7166761794(29)$
$\left[\mathbb{1}\right]/\left[\text{N}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
specific force |
$4.2966013114(13)
\times 10^{-30}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$7.0334594194(86)
\times 10^{-25}$
$\left[\mathbb{1}\right]/\left[\text{Pa}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
compressibility |
$1.4217754598(17)
\times 10^{24}$
$\left[\mathbb{1}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
viscosity |
$0.00054603845163(50)$
$\left[\mathbb{1}\right]/\left[\text{Pa} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
diffusivity |
$8637.9927371(26)$
$\left[\mathbb{1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\tau\cdot 2$ |
rotational inertia |
$7.3616993897(23)
\times 10^{54}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot
\alpha^{-2}\tau^{2}2$ |
impulse |
$3.6617635850(11)
\times 10^{21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
momentum |
$3.6617635850(11)
\times 10^{21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
angular momentum |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
yank |
$6.0754971382(56)
\times 10^{-21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
energy |
$1.22143285705(37)
\times 10^{13}$
$\left[\mathbb{1}\right]/\left[\text{J}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
specific energy |
$1.1126500560536183
\times 10^{-17}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{kg}^{-1}\right]$ |
$\text{c}^{-2}$ |
action |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
fluence |
$1.8213882206(17)
\times 10^{-12}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
power |
$1.57331382212(96)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
power density |
$9.059719376(14)
\times 10^{-46}$
$\left[\mathbb{1}\right]/\left[\text{W} \cdot
\text{m}^{-3}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
irradiance |
$2.3461095274(29)
\times 10^{-33}$
$\left[\mathbb{1}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
radiance |
$2.3461095274(29)
\times 10^{-33}$
$\left[\mathbb{1}\right]/\left[\text{W} \cdot
\text{m}^{-2}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
radiant intensity |
$1.57331382212(96)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{W}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
spectral flux |
$6.0754971382(56)
\times 10^{-21}$
$\left[\mathbb{1}\right]/\left[\text{N} \cdot
\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
spectral exposure |
$1.41402394541(87)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
sound exposure |
$3.8405392910(82)
\times 10^{-28}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\tau^{-5}2^{-7}$ |
impedance |
$3.1442901416(58)
\times 10^{-41}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\tau^{-5}2^{-6}$ |
specific impedance |
$2.1085780876(26)
\times 10^{-16}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
admittance |
$3.1803680798(58)
\times 10^{40}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar\cdot
\text{R}_{\infty}^{6}\alpha^{-12}\tau^{5}2^{6}$ |
compliance |
$5.4903177075(50)
\times 10^{11}$
$\left[\mathbb{1}\right]/\left[\text{m} \cdot
\text{N}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
inertance |
$2.4410510078(37)
\times 10^{-20}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
Name |
Quantity |
Product |
charge |
$1.89006701537(14)
\times 10^{18}$
$\left[\mathbb{1}\right]/\left[\text{C}\right]$ |
$\text{e}^{-1}\alpha^{1/2}\tau^{1/2}2^{1/2}$ |
charge density |
$1.0883700709(11)
\times 10^{-19}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\tau^{-5/2}2^{-5/2}$ |
linear charge
density |
$729866.89505(28)$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-1/2}$ |
exposure |
$1.72173456647(40)
\times 10^{-12}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\tau^{1/2}2^{3/2}$ |
mobility |
$0.0558219791268(43)$
$\left[\mathbb{1}\right]/\left[\text{m}^2
\text{s}^{-1} \text{V}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{e}\cdot
\alpha^{-1/2}\tau^{1/2}2^{-1/2}$ |
current |
$0.00243457390461(93)$
$\left[\mathbb{1}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-1/2}$ |
current density |
$3.6304117795(36)
\times 10^{-28}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\tau^{-5/2}2^{-5/2}$ |
resistance |
$0.00265441872799(41)$
$\left[\mathbb{1}\right]/\left[\Omega\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$ |
conductance |
$376.730313667(58)$
$\left[\mathbb{1}\right]/\left[\text{S}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot 2$ |
resistivity |
$6.8738962087(32)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\Omega \cdot
\text{m}\right]$ |
$\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau$ |
conductivity |
$1.45477902143(67)
\times 10^{-10}$
$\left[\mathbb{1}\right]/\left[\text{S} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}$ |
capacitance |
$2.92472345244(45)
\times 10^{23}$
$\left[\mathbb{1}\right]/\left[\text{F}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\tau\cdot 2^{2}$ |
inductance |
$2.06074224046(95)
\times 10^{18}$
$\left[\mathbb{1}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau$ |
reluctance |
$4.8526204800(22)
\times 10^{-19}$
$\left[\mathbb{1}\right]/\left[\text{H}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-1}$ |
permeance |
$2.06074224046(95)
\times 10^{18}$
$\left[\mathbb{1}\right]/\left[\text{H}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\text{R}_{\infty}\cdot
\alpha^{-3}\tau$ |
permittivity |
$1.12940906737(17)
\times 10^{11}$
$\left[\mathbb{1}\right]/\left[\text{F} \cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\alpha\cdot 2$ |
permeability |
$795774.71503(12)$
$\left[\mathbb{1}\right]/\left[\text{H} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\alpha^{-1}2^{-1}$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$1.5819385450(19)
\times 10^{7}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$1937.37235515(45)$
$\left[\mathbb{1}\right]/\left[\text{Wb} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1/2}2^{-3/2}$ |
electric potential |
$6.4623785671(15)
\times 10^{-6}$
$\left[\mathbb{1}\right]/\left[\text{V}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-1}\alpha^{3/2}\tau^{-1/2}2^{-3/2}$ |
magnetic potential |
$0.00243457390461(93)$
$\left[\mathbb{1}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1/2}2^{-1/2}$ |
electric field |
$2.4955073767(13)
\times 10^{-18}$
$\left[\mathbb{1}\right]/\left[\text{V} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{7/2}\tau^{-3/2}2^{-5/2}$ |
magnetic field |
$9.4013327680(65)
\times 10^{-16}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-3/2}2^{-3/2}$ |
electric flux |
$1.67350083328(13)
\times 10^{7}$
$\left[\mathbb{1}\right]/\left[\text{V} \cdot
\text{m}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\alpha^{-1/2}\tau^{1/2}2^{-1/2}$ |
magnetic flux |
$5.01702928275(38)
\times 10^{15}$
$\left[\mathbb{1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1}\text{e}\cdot
\alpha^{-1/2}\tau^{1/2}2^{-1/2}$ |
electric
displacement |
$2.8184486590(19)
\times 10^{-7}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-3/2}2^{-3/2}$ |
magnetic flux
density |
$7.4813429043(40)
\times 10^{-10}$
$\left[\mathbb{1}\right]/\left[\text{T}\right]$ |
$\hbar^{-1}\text{e}\cdot
\text{R}_{\infty}^{-2}\alpha^{7/2}\tau^{-3/2}2^{-5/2}$ |
electric dipole
moment |
$4.8945271348(11)
\times 10^{30}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\tau^{3/2}2^{3/2}$ |
magnetic dipole
moment |
$1.63263851514(38)
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{T}^{-1}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot
\alpha^{-3/2}\tau^{3/2}2^{3/2}$ |
electric
polarizability |
$1.9613354705(15)
\times 10^{48}$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\hbar\cdot
\text{c}\cdot
\text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-5}\tau^{3}2^{4}$ |
magnetic
polarizability |
$1.7366032619(16)
\times 10^{37}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ |
$\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
magnetic moment |
$1.29921244912(50)
\times 10^{28}$
$\left[\mathbb{1}\right]/\left[\text{Wb} \cdot
\text{m}\right]$ |
$\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot
\alpha^{-5/2}\tau^{3/2}2^{1/2}$ |
specific
magnetization |
$84.494965122(58)$
$\left[\mathbb{1}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\text{c}\cdot
\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-3/2}2^{-3/2}$ |
pole strength |
$6.30458493845(48)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\tau^{1/2}2^{1/2}$ |
Name |
Quantity |
Product |
temperature |
$1.68637005265(52)
\times 10^{-10}$
$\left[\mathbb{1}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
entropy |
$7.24297051603992
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}$ |
specific entropy |
$6.5978997570(20)
\times 10^{-8}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}2$ |
volume heat capacity |
$4.1707686924(38)
\times 10^{-15}$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
thermal conductivity |
$3.6027069673(22)
\times 10^{-11}$
$\left[\mathbb{1}\right]/\left[\text{W} \cdot
\text{m}^{-1} \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
thermal conductance |
$93.295882457(29)$
$\left[\mathbb{1}\right]/\left[\text{W} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
thermal resistivity |
$2.7756906378(17)
\times 10^{10}$
$\left[\mathbb{1}\right]/\left[\text{K} \cdot
\text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
thermal resistance |
$0.0107185866478(33)$
$\left[\mathbb{1}\right]/\left[\text{K} \cdot
\text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot
2$ |
thermal expansion |
$5.9298965754(18)
\times 10^{9}$
$\left[\mathbb{1}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot
\text{R}_{\infty}\cdot \alpha^{-2}2$ |
lapse rate |
$6.5120742504(40)
\times 10^{-23}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
Name |
Quantity |
Product |
molar mass |
$1000.000000340000000(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molality |
$0.00099999999966(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount |
$1.097769105373(32)
\times 10^{27}$
$\left[\mathbb{1}\right]/\left[\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\mu_\text{eu}^{-1}$ |
molarity |
$6.3213580755(58)
\times 10^{-11}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar volume |
$1.5819385456(15)
\times 10^{10}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
molar entropy |
$6.59789975924(19)
\times 10^{-5}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molar energy |
$1.11265005644(34)
\times 10^{-14}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar conductivity |
$8.8869574425(14)
\times 10^{-13}$
$\left[\mathbb{1}\right]/\left[\text{S} \cdot
\text{m}^2 \text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar\cdot
\text{e}^{-2}\text{R}_{\infty}\cdot
\alpha^{-1}\mu_\text{eu}\cdot \tau\cdot
2^{2}$ |
molar susceptibility |
$1.5819385456(15)
\times 10^{10}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot
\tau^{3}2^{3}$ |
catalysis |
$1.41402394492(44)
\times 10^{6}$
$\left[\mathbb{1}\right]/\left[\text{kat}\right]$ |
$\text{N}_\text{A}\cdot
\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
specificity |
$2.0376771143(13)
\times 10^{-11}$
$\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}\cdot
\tau^{2}2^{2}$ |
diffusion flux |
$1.27086134335(39)
\times 10^{23}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
Name |
Quantity |
Product |
luminous flux |
$2.3034677403(14)
\times 10^{-11}$
$\left[\mathbb{1}\right]/\left[\text{cd}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
luminous intensity |
$2.3034677403(14)
\times 10^{-11}$
$\left[\mathbb{1}\right]/\left[\text{cd}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
luminance |
$3.4349076043(42)
\times 10^{-36}$
$\left[\mathbb{1}\right]/\left[\text{lx}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
illuminance |
$3.4349076043(42)
\times 10^{-36}$
$\left[\mathbb{1}\right]/\left[\text{lx}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
luminous energy |
$1.78828352208(55)
\times 10^{10}$
$\left[\mathbb{1}\right]/\left[\text{s}\cdot
\text{lm}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
luminous exposure |
$2.6666701518(25)
\times 10^{-15}$
$\left[\mathbb{1}\right]/\left[\text{lx} \cdot
\text{s}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
luminous efficacy |
$0.0014640866354352104$
$\left[\mathbb{1}\right]/\left[\text{lm} \cdot
\text{W}^{-1}\right]$ |
$\text{K}_\text{cd}^{-1}$ |
|
Unified |
SI2019 |
Natural |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\mathbb{1}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\mathbb{1}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\mathbb{1}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\mathbb{1}$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\mathbb{1}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\mathbb{1}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\mathbb{1}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\mathbb{1}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\mathbb{1}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\mathbb{1}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\mathbb{1}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\mathbb{1}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\mathbb{1}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\mathbb{1}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\mathbb{1}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\mathbb{1}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\mathbb{1}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\mathbb{1}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\mathbb{1}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\mathbb{1}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\mathbb{1}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\mathbb{1}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
|
Unified |
SI2019 |
Natural |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\mathbb{1}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\mathbb{1}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\mathbb{1}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\mathbb{1}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\mathbb{1}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\mathbb{1}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\mathbb{1}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\mathbb{1}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\mathbb{1}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\mathbb{1}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\mathbb{1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\mathbb{1}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\mathbb{1}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\mathbb{1}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\mathbb{1}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\mathbb{1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\mathbb{1}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\mathbb{1}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\mathbb{1}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\mathbb{1}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\mathbb{1}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\mathbb{1}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\mathbb{1}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\mathbb{1}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\mathbb{1}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\mathbb{1}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\mathbb{1}$ |
|
Unified |
SI2019 |
Natural |
charge |
$\text{Q}$ |
$\text{C}$ |
$\mathbb{1}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\mathbb{1}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\mathbb{1}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\mathbb{1}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\mathbb{1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\mathbb{1}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\mathbb{1}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\mathbb{1}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\mathbb{1}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\mathbb{1}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\mathbb{1}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\mathbb{1}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\mathbb{1}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\mathbb{1}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\mathbb{1}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\mathbb{1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\mathbb{1}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\mathbb{1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\mathbb{1}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\mathbb{1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\mathbb{1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\mathbb{1}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\mathbb{1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\mathbb{1}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\mathbb{1}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\mathbb{1}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\mathbb{1}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\mathbb{1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\mathbb{1}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\mathbb{1}$ |
|
Unified |
SI2019 |
Natural |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\mathbb{1}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\mathbb{1}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\mathbb{1}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\mathbb{1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\mathbb{1}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\mathbb{1}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\mathbb{1}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\mathbb{1}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\mathbb{1}$ |