SI2019 -> NaturalGauss
data derived with UnitSystems.jl
Kinematic Ratios
Name | Quantity | Product |
---|---|---|
angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
solid angle | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
time | $7.7634407063(24) \times 10^{20}$ $\left[\mathbb{1}\right]/\left[\text{s}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
angular time | $7.7634407063(24) \times 10^{20}$ $\left[\mathbb{1}\right]/\left[\text{s}\right]$ | $\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
length | $2.58960507484(79) \times 10^{12}$ $\left[\mathbb{1}\right]/\left[\text{m}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
angular length | $2.58960507484(79) \times 10^{12}$ $\left[\mathbb{1}\right]/\left[\text{m}\right]$ | $\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
area | $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
angular area | $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
volume | $1.7366032619(16) \times 10^{37}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
wavenumber | $3.8615926796(12) \times 10^{-13}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular wavenumber | $3.8615926796(12) \times 10^{-13}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\right]$ | $\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
fuel efficiency | $1.49118980230(91) \times 10^{-25}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-2}\right]$ | $\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
number density | $5.7583676244(53) \times 10^{-38}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-3}\right]$ | $\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
frequency | $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
angular frequency | $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
frequency drift | $1.6591724171(10) \times 10^{-42}$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
stagnance | $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ | $\text{c}$ |
speed | $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ | $\text{c}^{-1}$ |
acceleration | $4.2966013114(13) \times 10^{-30}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
jerk | $5.5344034609(34) \times 10^{-51}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ | $\text{c}^{-3}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
snap | $7.1288023832(66) \times 10^{-72}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ | $\text{c}^{-4}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
crackle | $9.182529568(11) \times 10^{-93}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ | $\text{c}^{-5}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-4}$ |
pop | $1.1827912281(18) \times 10^{-113}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ | $\text{c}^{-6}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-5}2^{-5}$ |
volume flow | $2.2368989828(14) \times 10^{16}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
etendue | $6.7060544436(41) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\right]$ | $\text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
photon intensity | $1.28808866819(39) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{Hz}\right]$ | $\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
photon irradiance | $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
photon radiance | $0.000115767636121(35)$ $\left[\mathbb{1}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ | $\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
Mechanical Ratios
Name | Quantity | Product |
---|---|---|
inertia | $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass | $1.09776910575(34) \times 10^{30}$ $\left[\mathbb{1}\right]/\left[\text{kg}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
mass flow | $1.41402394541(87) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
linear density | $4.2391371426(26) \times 10^{17}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
area density | $163698.20958(15)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
density | $6.3213580777(77) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
specific weight | $2.7160355406(42) \times 10^{-37}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
specific volume | $1.5819385450(19) \times 10^{7}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
force | $4.7166761794(29)$ $\left[\mathbb{1}\right]/\left[\text{N}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
specific force | $4.2966013114(13) \times 10^{-30}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ | $\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
gravity force | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
pressure | $7.0334594194(86) \times 10^{-25}$ $\left[\mathbb{1}\right]/\left[\text{Pa}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
compressibility | $1.4217754598(17) \times 10^{24}$ $\left[\mathbb{1}\right]/\left[\text{Pa}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
viscosity | $0.00054603845163(50)$ $\left[\mathbb{1}\right]/\left[\text{Pa} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
diffusivity | $8637.9927371(26)$ $\left[\mathbb{1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ | $\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
rotational inertia | $7.3616993897(23) \times 10^{54}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau^{2}2$ |
impulse | $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
momentum | $3.6617635850(11) \times 10^{21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
angular momentum | $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ | $\hbar^{-1}\tau$ |
yank | $6.0754971382(56) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
energy | $1.22143285705(37) \times 10^{13}$ $\left[\mathbb{1}\right]/\left[\text{J}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
specific energy | $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ | $\text{c}^{-2}$ |
action | $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ | $\hbar^{-1}\tau$ |
fluence | $1.8213882206(17) \times 10^{-12}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
power | $1.57331382212(96) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{W}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
power density | $9.059719376(14) \times 10^{-46}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
irradiance | $2.3461095274(29) \times 10^{-33}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
radiance | $2.3461095274(29) \times 10^{-33}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
radiant intensity | $1.57331382212(96) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{W}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
spectral flux | $6.0754971382(56) \times 10^{-21}$ $\left[\mathbb{1}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
spectral exposure | $1.41402394541(87) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
sound exposure | $3.8405392910(82) \times 10^{-28}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ | $\hbar^{-2}\text{c}^{-1}\text{R}_{\infty}^{-7}\alpha^{14}\tau^{-5}2^{-7}$ |
impedance | $3.1442901416(58) \times 10^{-41}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-6}\alpha^{12}\tau^{-5}2^{-6}$ |
specific impedance | $2.1085780876(26) \times 10^{-16}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ | $\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
admittance | $3.1803680798(58) \times 10^{40}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ | $\hbar\cdot \text{R}_{\infty}^{6}\alpha^{-12}\tau^{5}2^{6}$ |
compliance | $5.4903177075(50) \times 10^{11}$ $\left[\mathbb{1}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{3}\alpha^{-6}\tau^{2}2^{3}$ |
inertance | $2.4410510078(37) \times 10^{-20}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ | $\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{-5}$ |
Electromagnetic Ratios
Name | Quantity | Product |
---|---|---|
charge | $5.33178061139(41) \times 10^{17}$ $\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ | $\text{e}^{-1}\alpha^{1/2}$ |
charge density | $3.0702352853(31) \times 10^{-20}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\tau^{-3}2^{-3}$ |
linear charge density | $205891.649781(79)$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1}2^{-1}$ |
exposure | $4.8569235402(11) \times 10^{-13}$ $\left[\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}2$ |
mobility | $0.197883763737(15)$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\tau$ |
current | $0.00068678061868(26)$ $\left[\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1}2^{-1}$ |
current density | $1.0241202550(10) \times 10^{-28}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-3}\alpha^{13/2}\tau^{-3}2^{-3}$ |
resistance | $0.0333564095016(51)$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ | $\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
conductance | $29.9792458163(46)$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ | $\hbar\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$ |
resistivity | $8.6379927324(40) \times 10^{10}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ | $\hbar^{-1}\text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau^{2}2$ |
conductivity | $1.15767636184(53) \times 10^{-11}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ | $\hbar\cdot \text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$ |
capacitance | $2.32742097316(36) \times 10^{22}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}2$ |
inductance | $2.5896050734(12) \times 10^{19}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau^{2}2$ |
reluctance | $3.8615926817(18) \times 10^{-20}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ | $\hbar\cdot \text{c}^{-1}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\tau^{-2}2^{-1}$ |
permeance | $2.5896050734(12) \times 10^{19}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\text{R}_{\infty}\cdot \alpha^{-3}\tau^{2}2$ |
permittivity | $8.9875517923(14) \times 10^{9}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$ |
permeability | $9.9999999945(15) \times 10^{6}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha^{-1}\tau$ |
susceptibility | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
specific susceptibility | $1.5819385450(19) \times 10^{7}$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ | $\hbar\cdot \text{c}^{-1}\text{R}_{\infty}^{4}\alpha^{-8}\tau^{3}2^{4}$ |
demagnetizing factor | $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ | $1$ |
vector potential | $6867.8061831(16)$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}2^{-1}$ |
electric potential | $2.29085355545(53) \times 10^{-5}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{3/2}2^{-1}$ |
magnetic potential | $0.00068678061868(26)$ $\left[\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-1}\alpha^{5/2}\tau^{-1}2^{-1}$ |
electric field | $8.8463433197(47) \times 10^{-18}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{7/2}\tau^{-1}2^{-2}$ |
magnetic field | $2.6520670096(18) \times 10^{-16}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-2}2^{-2}$ |
electric flux | $5.93240599289(45) \times 10^{7}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\tau$ |
magnetic flux | $1.77849057446(14) \times 10^{16}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ | $\hbar^{-1}\text{e}\cdot \alpha^{-1/2}\tau$ |
electric displacement | $7.9506968758(55) \times 10^{-8}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-2}2^{-2}$ |
magnetic flux density | $2.6520670081(14) \times 10^{-9}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}^{-2}\alpha^{7/2}\tau^{-1}2^{-2}$ |
electric dipole moment | $1.38072061292(32) \times 10^{30}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{C}\right]$ | $\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\tau\cdot 2$ |
magnetic dipole moment | $4.6055882197(11) \times 10^{21}$ $\left[\text{e}_\text{n}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ | $\text{c}^{-1}\text{e}^{-1}\text{R}_{\infty}\cdot \alpha^{-3/2}\tau\cdot 2$ |
electric polarizability | $1.5607811759(12) \times 10^{47}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ | $\hbar\cdot \text{c}\cdot \text{e}^{-2}\text{R}_{\infty}^{3}\alpha^{-5}\tau^{2}2^{3}$ |
magnetic polarizability | $1.7366032619(16) \times 10^{37}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\right]$ | $\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{3}$ |
magnetic moment | $4.6055882172(18) \times 10^{28}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ | $\hbar^{-1}\text{e}\cdot \text{R}_{\infty}\cdot \alpha^{-5/2}\tau^{2}2$ |
specific magnetization | $23.835589592(16)$ $\left[\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ | $\text{c}\cdot \text{e}^{-1}\text{R}_{\infty}^{-2}\alpha^{9/2}\tau^{-2}2^{-2}$ |
pole strength | $1.77849057543(14) \times 10^{9}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ | $\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}$ |
Thermodynamic Ratios
Name | Quantity | Product |
---|---|---|
temperature | $1.68637005265(52) \times 10^{-10}$ $\left[\mathbb{1}\right]/\left[\text{K}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
entropy | $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}$ |
specific entropy | $6.5978997570(20) \times 10^{-8}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}2$ |
volume heat capacity | $4.1707686924(38) \times 10^{-15}$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-3}2^{-3}$ |
thermal conductivity | $3.6027069673(22) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-2}$ |
thermal conductance | $93.295882457(29)$ $\left[\mathbb{1}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1}$ |
thermal resistivity | $2.7756906378(17) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\tau^{2}2^{2}$ |
thermal resistance | $0.0107185866478(33)$ $\left[\mathbb{1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ | $\text{k}_\text{B}\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2$ |
thermal expansion | $5.9298965754(18) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{K}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}2$ |
lapse rate | $6.5120742504(40) \times 10^{-23}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{K}\right]$ | $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
Molar Ratios
Name | Quantity | Product |
---|---|---|
molar mass | $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molality | $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ | $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount | $1.097769105373(32) \times 10^{27}$ $\left[\mathbb{1}\right]/\left[\text{mol}\right]$ | $\text{N}_\text{A}\cdot \mu_\text{eu}^{-1}$ |
molarity | $6.3213580755(58) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-3}\text{mol}\right]$ | $\text{N}_\text{A}\cdot \text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\tau^{-3}2^{-3}$ |
molar volume | $1.5819385456(15) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot \tau^{3}2^{3}$ |
molar entropy | $6.59789975924(19) \times 10^{-5}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ | $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}$ |
molar energy | $1.11265005644(34) \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$ |
molar conductivity | $7.0720160301(11) \times 10^{-14}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\hbar\cdot \text{e}^{-2}\text{R}_{\infty}\cdot \alpha^{-1}\mu_\text{eu}\cdot 2$ |
molar susceptibility | $1.5819385456(15) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{R}_{\infty}^{3}\alpha^{-6}\mu_\text{eu}\cdot \tau^{3}2^{3}$ |
catalysis | $1.41402394492(44) \times 10^{6}$ $\left[\mathbb{1}\right]/\left[\text{kat}\right]$ | $\text{N}_\text{A}\cdot \text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
specificity | $2.0376771143(13) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ | $\text{N}_\text{A}^{-1}\text{c}^{-1}\text{R}_{\infty}^{2}\alpha^{-4}\mu_\text{eu}\cdot \tau^{2}2^{2}$ |
diffusion flux | $1.27086134335(39) \times 10^{23}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ | $\text{N}_\text{A}\cdot \text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}^{-1}\tau^{-1}2^{-1}$ |
Photometric Ratios
Name | Quantity | Product |
---|---|---|
luminous flux | $2.3034677403(14) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{cd}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
luminous intensity | $2.3034677403(14) \times 10^{-11}$ $\left[\mathbb{1}\right]/\left[\text{cd}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2}$ |
luminance | $3.4349076043(42) \times 10^{-36}$ $\left[\mathbb{1}\right]/\left[\text{lx}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
illuminance | $3.4349076043(42) \times 10^{-36}$ $\left[\mathbb{1}\right]/\left[\text{lx}\right]$ | $\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4}$ |
luminous energy | $1.78828352208(55) \times 10^{10}$ $\left[\mathbb{1}\right]/\left[\text{s}\cdot \text{lm}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1}$ |
luminous exposure | $2.6666701518(25) \times 10^{-15}$ $\left[\mathbb{1}\right]/\left[\text{lx} \cdot \text{s}\right]$ | $\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-3}$ |
luminous efficacy | $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ | $\text{K}_\text{cd}^{-1}$ |
Kinematic
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
angle | $\text{A}$ | $\mathbb{1}$ | $\mathbb{1}$ |
solid angle | $\text{A}^{2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
time | $\text{T}$ | $\text{s}$ | $\mathbb{1}$ |
angular time | $\text{T}\cdot \text{A}^{-1}$ | $\text{s}$ | $\mathbb{1}$ |
length | $\text{L}$ | $\text{m}$ | $\mathbb{1}$ |
angular length | $\text{L}\cdot \text{A}^{-1}$ | $\text{m}$ | $\mathbb{1}$ |
area | $\text{L}^{2}$ | $\text{m}^{2}$ | $\mathbb{1}$ |
angular area | $\text{L}^{2}\text{A}^{-2}$ | $\text{m}^{2}$ | $\mathbb{1}$ |
volume | $\text{L}^{3}$ | $\text{m}^{3}$ | $\mathbb{1}$ |
wavenumber | $\text{L}^{-1}$ | $\text{m}^{-1}$ | $\mathbb{1}$ |
angular wavenumber | $\text{L}^{-1}\text{A}$ | $\text{m}^{-1}$ | $\mathbb{1}$ |
fuel efficiency | $\text{L}^{-2}$ | $\text{m}^{-2}$ | $\mathbb{1}$ |
number density | $\text{L}^{-3}$ | $\text{m}^{-3}$ | $\mathbb{1}$ |
frequency | $\text{T}^{-1}$ | $\text{Hz}$ | $\mathbb{1}$ |
angular frequency | $\text{T}^{-1}\text{A}$ | $\text{Hz}$ | $\mathbb{1}$ |
frequency drift | $\text{T}^{-2}$ | $\text{Hz} \cdot \text{s}^{-1}$ | $\mathbb{1}$ |
stagnance | $\text{L}^{-1}\text{T}$ | $\text{m}^{-1}\text{s}$ | $\mathbb{1}$ |
speed | $\text{L}\cdot \text{T}^{-1}$ | $\text{m}\cdot \text{s}^{-1}$ | $\mathbb{1}$ |
acceleration | $\text{L}\cdot \text{T}^{-2}$ | $\text{m}\cdot \text{s}^{-2}$ | $\mathbb{1}$ |
jerk | $\text{L}\cdot \text{T}^{-3}$ | $\text{m}\cdot \text{s}^{-3}$ | $\mathbb{1}$ |
snap | $\text{L}\cdot \text{T}^{-4}$ | $\text{m}\cdot \text{s}^{-4}$ | $\mathbb{1}$ |
crackle | $\text{L}\cdot \text{T}^{-5}$ | $\text{m}\cdot \text{s}^{-5}$ | $\mathbb{1}$ |
pop | $\text{L}\cdot \text{T}^{-6}$ | $\text{m}\cdot \text{s}^{-6}$ | $\mathbb{1}$ |
volume flow | $\text{L}^{3}\text{T}^{-1}$ | $\text{m}^{3}\text{s}^{-1}$ | $\mathbb{1}$ |
etendue | $\text{L}^{2}\text{A}^{2}$ | $\text{m}^{2}$ | $\mathbb{1}$ |
photon intensity | $\text{T}^{-1}\text{A}^{-2}$ | $\text{Hz}$ | $\mathbb{1}$ |
photon irradiance | $\text{L}^{-2}\text{T}$ | $\text{Hz} \cdot \text{m}^{-2}$ | $\mathbb{1}$ |
photon radiance | $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ | $\text{Hz} \cdot \text{m}^{-2}$ | $\mathbb{1}$ |
Mechanical
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
inertia | $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ | $\text{kg}$ | $\mathbb{1}$ |
mass | $\text{M}$ | $\text{kg}$ | $\mathbb{1}$ |
mass flow | $\text{M}\cdot \text{T}^{-1}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ | $\mathbb{1}$ |
linear density | $\text{M}\cdot \text{L}^{-1}$ | $\text{kg}\cdot \text{m}^{-1}$ | $\mathbb{1}$ |
area density | $\text{M}\cdot \text{L}^{-2}$ | $\text{kg}\cdot \text{m}^{-2}$ | $\mathbb{1}$ |
density | $\text{M}\cdot \text{L}^{-3}$ | $\text{kg}\cdot \text{m}^{-3}$ | $\mathbb{1}$ |
specific weight | $\text{F}\cdot \text{L}^{-3}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ | $\mathbb{1}$ |
specific volume | $\text{M}^{-1}\text{L}^{3}$ | $\text{kg}^{-1}\text{m}^{3}$ | $\mathbb{1}$ |
force | $\text{F}$ | $\text{N}$ | $\mathbb{1}$ |
specific force | $\text{F}\cdot \text{M}^{-1}$ | $\text{m}\cdot \text{s}^{-2}$ | $\mathbb{1}$ |
gravity force | $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ | $\mathbb{1}$ | $\mathbb{1}$ |
pressure | $\text{F}\cdot \text{L}^{-2}$ | $\text{Pa}$ | $\mathbb{1}$ |
compressibility | $\text{F}^{-1}\text{L}^{2}$ | $\text{Pa}^{-1}$ | $\mathbb{1}$ |
viscosity | $\text{F}\cdot \text{L}^{-2}\text{T}$ | $\text{Pa} \cdot \text{s}$ | $\mathbb{1}$ |
diffusivity | $\text{L}^{2}\text{T}^{-1}$ | $\text{m}^{2}\text{s}^{-1}$ | $\mathbb{1}$ |
rotational inertia | $\text{M}\cdot \text{L}^{2}$ | $\text{kg}\cdot \text{m}^{2}$ | $\mathbb{1}$ |
impulse | $\text{F}\cdot \text{T}$ | $\text{N} \cdot \text{s}$ | $\mathbb{1}$ |
momentum | $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{N} \cdot \text{s}$ | $\mathbb{1}$ |
angular momentum | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ | $\text{J} \cdot \text{s}$ | $\mathbb{1}$ |
yank | $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ | $\text{N} \cdot \text{s}^{-1}$ | $\mathbb{1}$ |
energy | $\text{F}\cdot \text{L}$ | $\text{J}$ | $\mathbb{1}$ |
specific energy | $\text{F}\cdot \text{M}^{-1}\text{L}$ | $\text{J} \cdot \text{kg}^{-1}$ | $\mathbb{1}$ |
action | $\text{F}\cdot \text{L}\cdot \text{T}$ | $\text{J} \cdot \text{s}$ | $\mathbb{1}$ |
fluence | $\text{F}\cdot \text{L}^{-1}$ | $\text{N} \cdot \text{m}^{-1}$ | $\mathbb{1}$ |
power | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ | $\text{W}$ | $\mathbb{1}$ |
power density | $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ | $\text{W} \cdot \text{m}^{-3}$ | $\mathbb{1}$ |
irradiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ | $\text{W} \cdot \text{m}^{-2}$ | $\mathbb{1}$ |
radiance | $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ | $\text{W} \cdot \text{m}^{-2}$ | $\mathbb{1}$ |
radiant intensity | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ | $\text{W}$ | $\mathbb{1}$ |
spectral flux | $\text{F}\cdot \text{T}^{-1}$ | $\text{N} \cdot \text{s}^{-1}$ | $\mathbb{1}$ |
spectral exposure | $\text{F}\cdot \text{L}^{-1}\text{T}$ | $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ | $\mathbb{1}$ |
sound exposure | $\text{F}^{2}\text{L}^{-4}\text{T}$ | $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ | $\mathbb{1}$ |
impedance | $\text{F}\cdot \text{L}^{-5}\text{T}$ | $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ | $\mathbb{1}$ |
specific impedance | $\text{F}\cdot \text{L}^{-3}\text{T}$ | $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ | $\mathbb{1}$ |
admittance | $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ | $\text{kg}^{-1}\text{m}^{4}\text{s}$ | $\mathbb{1}$ |
compliance | $\text{M}^{-1}\text{T}^{2}$ | $\text{m} \cdot \text{N}^{-1}$ | $\mathbb{1}$ |
inertance | $\text{M}\cdot \text{L}^{-4}$ | $\text{kg}\cdot \text{m}^{-4}$ | $\mathbb{1}$ |
Electromagnetic
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
charge | $\text{Q}$ | $\text{C}$ | $\text{e}_\text{n}$ |
charge density | $\text{L}^{-3}\text{Q}$ | $\text{m}^{-3}\text{C}$ | $\text{e}_\text{n}$ |
linear charge density | $\text{L}^{-1}\text{Q}$ | $\text{m}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
exposure | $\text{M}^{-1}\text{Q}$ | $\text{kg}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
mobility | $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ | $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ | $\text{e}_\text{n}^{-1}$ |
current | $\text{T}^{-1}\text{Q}$ | $\text{s}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
current density | $\text{L}^{-2}\text{T}^{-1}\text{Q}$ | $\text{m}^{-2}\text{s}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
resistance | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ | $\Omega$ | $\text{e}_\text{n}^{-2}$ |
conductance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ | $\text{S}$ | $\text{e}_\text{n}^{2}$ |
resistivity | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ | $\Omega \cdot \text{m}$ | $\text{e}_\text{n}^{-2}$ |
conductivity | $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ | $\text{S} \cdot \text{m}^{-1}$ | $\text{e}_\text{n}^{2}$ |
capacitance | $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ | $\text{F}$ | $\text{e}_\text{n}^{2}$ |
inductance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ | $\text{H}$ | $\text{e}_\text{n}^{-2}$ |
reluctance | $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ | $\text{H}^{-1}$ | $\text{e}_\text{n}^{2}$ |
permeance | $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{H}$ | $\text{e}_\text{n}^{-2}$ |
permittivity | $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ | $\text{F} \cdot \text{m}^{-1}$ | $\text{e}_\text{n}^{2}$ |
permeability | $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ | $\text{H} \cdot \text{m}^{-1}$ | $\text{e}_\text{n}^{-2}$ |
susceptibility | $\text{R}^{-1}$ | $\mathbb{1}$ | $\mathbb{1}$ |
specific susceptibility | $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{kg}^{-1}\text{m}^{3}$ | $\mathbb{1}$ |
demagnetizing factor | $\text{R}$ | $\mathbb{1}$ | $\mathbb{1}$ |
vector potential | $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb} \cdot \text{m}^{-1}$ | $\text{e}_\text{n}^{-1}$ |
electric potential | $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ | $\text{V}$ | $\text{e}_\text{n}^{-1}$ |
magnetic potential | $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{s}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
electric field | $\text{F}\cdot \text{Q}^{-1}$ | $\text{V} \cdot \text{m}^{-1}$ | $\text{e}_\text{n}^{-1}$ |
magnetic field | $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ | $\text{m}^{-1}\text{s}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
electric flux | $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ | $\text{V} \cdot \text{m}$ | $\text{e}_\text{n}^{-1}$ |
magnetic flux | $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb}$ | $\text{e}_\text{n}^{-1}$ |
electric displacement | $\text{L}^{-2}\text{Q}\cdot \text{R}$ | $\text{m}^{-2}\text{C}$ | $\text{e}_\text{n}$ |
magnetic flux density | $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{T}$ | $\text{e}_\text{n}^{-1}$ |
electric dipole moment | $\text{L}\cdot \text{Q}$ | $\text{m}\cdot \text{C}$ | $\text{e}_\text{n}$ |
magnetic dipole moment | $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{J} \cdot \text{T}^{-1}$ | $\text{e}_\text{n}$ |
electric polarizability | $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ | $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ | $\text{e}_\text{n}^{2}$ |
magnetic polarizability | $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}^{3}$ | $\mathbb{1}$ |
magnetic moment | $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ | $\text{Wb} \cdot \text{m}$ | $\text{e}_\text{n}^{-1}$ |
specific magnetization | $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ | $\text{m}^{-3}\text{s}\cdot \text{C}$ | $\text{e}_\text{n}$ |
pole strength | $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ | $\text{m}\cdot \text{s}^{-1}\text{C}$ | $\text{e}_\text{n}$ |
Thermodynamic
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
temperature | $\Theta$ | $\text{K}$ | $\mathbb{1}$ |
entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ | $\text{J} \cdot \text{K}^{-1}$ | $\mathbb{1}$ |
specific entropy | $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ | $\mathbb{1}$ |
volume heat capacity | $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ | $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ | $\mathbb{1}$ |
thermal conductivity | $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ | $\mathbb{1}$ |
thermal conductance | $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ | $\text{W} \cdot \text{K}^{-1}$ | $\mathbb{1}$ |
thermal resistivity | $\text{F}^{-1}\text{T}\cdot \Theta$ | $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ | $\mathbb{1}$ |
thermal resistance | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ | $\text{K} \cdot \text{W}^{-1}$ | $\mathbb{1}$ |
thermal expansion | $\Theta^{-1}$ | $\text{K}^{-1}$ | $\mathbb{1}$ |
lapse rate | $\text{L}^{-1}\Theta$ | $\text{m}^{-1}\text{K}$ | $\mathbb{1}$ |
Molar
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
molar mass | $\text{M}\cdot \text{N}^{-1}$ | $\text{kg}\cdot \text{mol}^{-1}$ | $\mathbb{1}$ |
molality | $\text{M}^{-1}\text{N}$ | $\text{kg}^{-1}\text{mol}$ | $\mathbb{1}$ |
molar amount | $\text{N}$ | $\text{mol}$ | $\mathbb{1}$ |
molarity | $\text{L}^{-3}\text{N}$ | $\text{m}^{-3}\text{mol}$ | $\mathbb{1}$ |
molar volume | $\text{L}^{3}\text{N}^{-1}$ | $\text{m}^{3}\text{mol}^{-1}$ | $\mathbb{1}$ |
molar entropy | $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ | $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ | $\mathbb{1}$ |
molar energy | $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ | $\text{J} \cdot \text{mol}^{-1}$ | $\mathbb{1}$ |
molar conductivity | $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ | $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ | $\text{e}_\text{n}^{2}$ |
molar susceptibility | $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ | $\text{m}^{3}\text{mol}^{-1}$ | $\mathbb{1}$ |
catalysis | $\text{T}^{-1}\text{N}$ | $\text{kat}$ | $\mathbb{1}$ |
specificity | $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ | $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ | $\mathbb{1}$ |
diffusion flux | $\text{L}^{-2}\text{T}\cdot \text{N}$ | $\text{m}^{-2}\text{s}\cdot \text{mol}$ | $\mathbb{1}$ |
Photometric
Unified | SI2019 | NaturalGauss | |
---|---|---|---|
luminous flux | $\text{J}$ | $\text{cd}$ | $\mathbb{1}$ |
luminous intensity | $\text{J}\cdot \text{A}^{-2}$ | $\text{cd}$ | $\mathbb{1}$ |
luminance | $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ | $\text{lx}$ | $\mathbb{1}$ |
illuminance | $\text{L}^{-2}\text{J}$ | $\text{lx}$ | $\mathbb{1}$ |
luminous energy | $\text{T}\cdot \text{J}$ | $\text{s}\cdot \text{lm}$ | $\mathbb{1}$ |
luminous exposure | $\text{L}^{-2}\text{T}\cdot \text{J}$ | $\text{lx} \cdot \text{s}$ | $\mathbb{1}$ |
luminous efficacy | $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ | $\text{lm} \cdot \text{W}^{-1}$ | $\mathbb{1}$ |