SI2019 -> Planck

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $5.232459(58) \times 10^{42}$ $\left[\text{M}^{-1}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
angular time $5.232459(58) \times 10^{42}$ $\left[\text{M}^{-1}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
length $1.745360(19) \times 10^{34}$ $\left[\text{M}^{-1}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
angular length $1.745360(19) \times 10^{34}$ $\left[\text{M}^{-1}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
area $3.046283(67) \times 10^{68}$ $\left[\text{M}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
angular area $3.046283(67) \times 10^{68}$ $\left[\text{M}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
volume $5.31686(18) \times 10^{102}$ $\left[\text{M}^{-3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$
wavenumber $5.729476(63) \times 10^{-35}$ $\left[\text{M}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
angular wavenumber $5.729476(63) \times 10^{-35}$ $\left[\text{M}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
fuel efficiency $3.282689(72) \times 10^{-69}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}2$
number density $1.880809(62) \times 10^{-103}$ $\left[\text{M}^{3}\right]/\left[\text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$
frequency $1.911147(21) \times 10^{-43}$ $\left[\text{M}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
angular frequency $1.911147(21) \times 10^{-43}$ $\left[\text{M}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
frequency drift $3.652484(81) \times 10^{-86}$ $\left[\text{M}^{2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-1}2$
stagnance $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}$
speed $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}$
acceleration $6.374902(70) \times 10^{-52}$ $\left[\text{M}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
jerk $1.218338(27) \times 10^{-94}$ $\left[\text{M}^{2}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-2}\tau^{-1}2$
snap $2.328423(77) \times 10^{-137}$ $\left[\text{M}^{3}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\hbar^{3}\text{c}^{-7}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$
crackle $4.44996(20) \times 10^{-180}$ $\left[\text{M}^{4}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\hbar^{4}\text{c}^{-9}\text{m}_\text{P}^{-4}\tau^{-2}2^{2}$
pop $8.50453(47) \times 10^{-223}$ $\left[\text{M}^{5}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\hbar^{5}\text{c}^{-11}\text{m}_\text{P}^{-5}\tau^{-5/2}2^{5/2}$
volume flow $1.016131(22) \times 10^{60}$ $\left[\text{M}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\hbar^{-2}\text{c}\cdot \text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
etendue $3.046283(67) \times 10^{68}$ $\left[\text{M}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
photon intensity $1.911147(21) \times 10^{-43}$ $\left[\text{M}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
photon irradiance $1.717654(19) \times 10^{-26}$ $\left[\text{M}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
photon radiance $1.717654(19) \times 10^{-26}$ $\left[\text{M}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$

Mechanical Ratios

Name Quantity Product
inertia $1.628769(18) \times 10^{8}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
mass $1.628769(18) \times 10^{8}$ $\left[\text{M}\right]/\left[\text{kg}\right]$ $\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
mass flow $3.112817(69) \times 10^{-35}$ $\left[\text{M}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-2}2$
linear density $9.33199(21) \times 10^{-27}$ $\left[\text{M}^{2}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-2}2$
area density $5.34674(18) \times 10^{-61}$ $\left[\text{M}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
density $3.06340(14) \times 10^{-95}$ $\left[\text{M}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
specific weight $1.95289(11) \times 10^{-146}$ $\left[\text{M}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{4}\text{c}^{-6}\text{m}_\text{P}^{-5}\tau^{-3/2}2^{5/2}$
specific volume $3.26434(14) \times 10^{94}$ $\left[\text{M}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
force $1.038324(23) \times 10^{-43}$ $\left[\text{M}^{2}\right]/\left[\text{N}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2$
specific force $6.374902(70) \times 10^{-52}$ $\left[\text{M}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $3.40850(15) \times 10^{-112}$ $\left[\text{M}^{4}\right]/\left[\text{Pa}\right]$ $\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
compressibility $2.93385(13) \times 10^{111}$ $\left[\text{M}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
viscosity $1.783481(59) \times 10^{-69}$ $\left[\text{M}^{3}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
diffusivity $5.821896(64) \times 10^{25}$ $\left[\text{M}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
rotational inertia $4.961690(55) \times 10^{76}$ $\left[\text{M}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{3/2}2^{-1/2}$
impulse $0.5432988(60)$ $\left[\text{M}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
momentum $0.5432988(60)$ $\left[\text{M}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $1.984390(66) \times 10^{-86}$ $\left[\text{M}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
energy $1.812250(20) \times 10^{-9}$ $\left[\text{M}\right]/\left[\text{J}\right]$ $\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
specific energy $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $5.94905(20) \times 10^{-78}$ $\left[\text{M}^{3}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
power $3.463476(76) \times 10^{-52}$ $\left[\text{M}^{2}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\text{m}_\text{P}^{-2}2$
power density $6.51414(36) \times 10^{-155}$ $\left[\text{M}^{5}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{4}\text{c}^{-7}\text{m}_\text{P}^{-5}\tau^{-3/2}2^{5/2}$
irradiance $1.136952(50) \times 10^{-120}$ $\left[\text{M}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
radiance $1.136952(50) \times 10^{-120}$ $\left[\text{M}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
radiant intensity $3.463476(76) \times 10^{-52}$ $\left[\text{M}^{2}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\text{m}_\text{P}^{-2}2$
spectral flux $1.984390(66) \times 10^{-86}$ $\left[\text{M}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
spectral exposure $3.112817(69) \times 10^{-35}$ $\left[\text{M}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-2}2$
sound exposure $6.07899(47) \times 10^{-181}$ $\left[\text{M}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{5}\text{c}^{-8}\text{m}_\text{P}^{-7}\tau^{-3/2}2^{7/2}$
impedance $3.35439(22) \times 10^{-172}$ $\left[\text{M}^{6}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-2}2^{3}$
specific impedance $1.021841(45) \times 10^{-103}$ $\left[\text{M}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{3}\text{c}^{-4}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
admittance $2.98117(20) \times 10^{171}$ $\left[\text{M}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{2}2^{-3}$
compliance $1.680940(56) \times 10^{77}$ $\left[\text{M}^{-3}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{1/2}2^{-3/2}$
inertance $1.755169(97) \times 10^{-129}$ $\left[\text{M}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{4}\text{c}^{-4}\text{m}_\text{P}^{-5}\tau^{-3/2}2^{5/2}$

Electromagnetic Ratios

Name Quantity Product
charge $1.89006701537(14) \times 10^{18}$ $\left[\mathbb{1}\right]/\left[\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}\tau^{1/2}2^{1/2}$
charge density $3.55485(12) \times 10^{-85}$ $\left[\text{M}^{3}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\hbar^{3}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-1}2^{2}$
linear charge density $1.082909(12) \times 10^{-16}$ $\left[\text{M}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}2$
exposure $1.160427(13) \times 10^{10}$ $\left[\text{M}^{-1}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$
mobility $0.0558219791268(43)$ $\left[\mathbb{1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\tau^{1/2}2^{-1/2}$
current $3.612197(40) \times 10^{-25}$ $\left[\text{M}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}2$
current density $1.185772(39) \times 10^{-93}$ $\left[\text{M}^{3}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\hbar^{3}\text{c}^{-4}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-1}2^{2}$
resistance $0.00265441872799(41)$ $\left[\mathbb{1}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}2^{-1}$
conductance $376.730313667(58)$ $\left[\mathbb{1}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot 2$
resistivity $4.632917(51) \times 10^{31}$ $\left[\text{M}^{-1}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-3/2}$
conductivity $2.158467(24) \times 10^{-32}$ $\left[\text{M}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$
capacitance $1.971226(22) \times 10^{45}$ $\left[\text{M}^{-1}\right]/\left[\text{F}\right]$ $\text{c}^{2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}\cdot \tau^{1/2}2^{1/2}$
inductance $1.388914(15) \times 10^{40}$ $\left[\text{M}^{-1}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-3/2}$
reluctance $7.199872(79) \times 10^{-41}$ $\left[\text{M}\right]/\left[\text{H}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-1/2}2^{3/2}$
permeance $1.388914(15) \times 10^{40}$ $\left[\text{M}^{-1}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{1/2}2^{-3/2}$
permittivity $1.12940906737(17) \times 10^{11}$ $\left[\mathbb{1}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot 2$
permeability $795774.71503(12)$ $\left[\mathbb{1}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha^{-1}2^{-1}$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $3.26434(14) \times 10^{94}$ $\left[\text{M}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau\cdot 2^{-2}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $2.874495(32) \times 10^{-19}$ $\left[\text{M}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
electric potential $9.58828(11) \times 10^{-28}$ $\left[\text{M}\right]/\left[\text{V}\right]$ $\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
magnetic potential $3.612197(40) \times 10^{-25}$ $\left[\text{M}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}2$
electric field $5.49358(12) \times 10^{-62}$ $\left[\text{M}^{2}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-3}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1/2}2^{1/2}$
magnetic field $2.069599(46) \times 10^{-59}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\hbar^{2}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-1/2}2^{3/2}$
electric flux $1.67350083328(13) \times 10^{7}$ $\left[\mathbb{1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\tau^{1/2}2^{-1/2}$
magnetic flux $5.01702928275(38) \times 10^{15}$ $\left[\mathbb{1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \alpha^{-1/2}\tau^{1/2}2^{-1/2}$
electric displacement $6.20450(14) \times 10^{-51}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-1/2}2^{3/2}$
magnetic flux density $1.646935(36) \times 10^{-53}$ $\left[\text{M}^{2}\right]/\left[\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1/2}2^{1/2}$
electric dipole moment $3.298848(36) \times 10^{52}$ $\left[\text{M}^{-1}\right]/\left[\text{m}\cdot \text{C}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
magnetic dipole moment $1.100377(12) \times 10^{44}$ $\left[\text{M}^{-1}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\hbar^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
electric polarizability $6.00491(20) \times 10^{113}$ $\left[\text{M}^{-3}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar^{-2}\text{c}^{4}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{3}\tau^{3/2}2^{-1/2}$
magnetic polarizability $5.31686(18) \times 10^{102}$ $\left[\text{M}^{-3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3/2}2^{-3/2}$
magnetic moment $8.756524(97) \times 10^{49}$ $\left[\text{M}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot \tau\cdot 2^{-1}$
specific magnetization $1.860063(41) \times 10^{-42}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-1/2}2^{3/2}$
pole strength $6.30458493845(48) \times 10^{9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\tau^{1/2}2^{1/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $2.502081(28) \times 10^{-32}$ $\left[\text{M}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $4.446899(49) \times 10^{14}$ $\left[\text{M}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
volume heat capacity $1.362264(45) \times 10^{-80}$ $\left[\text{M}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3/2}2^{3/2}$
thermal conductivity $7.93096(17) \times 10^{-55}$ $\left[\text{M}^{2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}2$
thermal conductance $1.384238(15) \times 10^{-20}$ $\left[\text{M}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1/2}2^{1/2}$
thermal resistivity $1.260881(28) \times 10^{54}$ $\left[\text{M}^{-2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{2}\tau\cdot 2^{-1}$
thermal resistance $7.224189(80) \times 10^{19}$ $\left[\text{M}^{-1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{1/2}2^{-1/2}$
thermal expansion $3.996674(44) \times 10^{31}$ $\left[\text{M}^{-1}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{-1/2}2^{-1/2}$
lapse rate $1.433561(32) \times 10^{-66}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}2$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $162876.9(18)$ $\left[\text{M}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{3/2}$
molarity $3.06340(14) \times 10^{-98}$ $\left[\text{M}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{3}$
molar volume $3.26434(14) \times 10^{97}$ $\left[\text{M}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau\cdot 2^{-3}$
molar entropy $4.446899(49) \times 10^{17}$ $\left[\text{M}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot \tau^{-1/2}2^{-3/2}$
molar energy $1.11265005644(34) \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar conductivity $4.036977(89) \times 10^{31}$ $\left[\text{M}^{-2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{2}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}2^{-1}$
molar susceptibility $3.26434(14) \times 10^{97}$ $\left[\text{M}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau\cdot 2^{-3}$
catalysis $3.112817(69) \times 10^{-38}$ $\left[\text{M}^{2}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2^{2}$
specificity $6.23864(21) \times 10^{54}$ $\left[\text{M}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-3}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{3}\tau^{1/2}2^{-5/2}$
diffusion flux $2.797661(62) \times 10^{-21}$ $\left[\text{M}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}2^{2}$

Photometric Ratios

Name Quantity Product
luminous flux $5.07083(11) \times 10^{-55}$ $\left[\text{M}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-2}2$
luminous intensity $5.07083(11) \times 10^{-55}$ $\left[\text{M}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-2}2$
luminance $1.664596(73) \times 10^{-123}$ $\left[\text{M}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
illuminance $1.664596(73) \times 10^{-123}$ $\left[\text{M}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-4}\tau^{-1}2^{2}$
luminous energy $2.653290(29) \times 10^{-12}$ $\left[\text{M}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-1}\tau^{1/2}2^{1/2}$
luminous exposure $8.70993(29) \times 10^{-81}$ $\left[\text{M}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-3}\tau^{-1/2}2^{3/2}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 Planck
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{M}^{-1}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{M}^{-1}$
length $\text{L}$ $\text{m}$ $\text{M}^{-1}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{M}^{-1}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{M}^{-2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{M}^{-2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{M}^{-3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{M}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{M}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{M}^{2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{M}^{3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{M}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{M}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{M}^{2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\mathbb{1}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\mathbb{1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{M}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{M}^{2}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{M}^{3}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{M}^{4}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{M}^{5}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{M}^{-2}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{M}^{-2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{M}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{M}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{M}$

Mechanical

Unified SI2019 Planck
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\text{M}$
mass $\text{M}$ $\text{kg}$ $\text{M}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}^{2}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{M}^{2}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{M}^{3}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{M}^{4}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{M}^{5}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-4}$
force $\text{F}$ $\text{N}$ $\text{M}^{2}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{M}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{M}^{4}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{M}^{-4}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{M}^{3}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{M}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{M}^{-1}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{M}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{M}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}^{3}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{M}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\mathbb{1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{M}^{3}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{M}^{2}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{M}^{5}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}^{4}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{M}^{4}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{M}^{2}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{M}^{3}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{M}^{2}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{M}^{7}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{M}^{6}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{M}^{4}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{M}^{-6}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{M}^{-3}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{M}^{5}$

Electromagnetic

Unified SI2019 Planck
charge $\text{Q}$ $\text{C}$ $\mathbb{1}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{M}^{3}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{M}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{M}^{-1}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\mathbb{1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{M}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{M}^{3}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\mathbb{1}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\mathbb{1}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{M}^{-1}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{M}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{M}^{-1}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{M}^{-1}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{M}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{M}^{-1}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\mathbb{1}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\mathbb{1}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{M}^{-4}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{M}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{M}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{M}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{M}^{2}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{M}^{2}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\mathbb{1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\mathbb{1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{M}^{2}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{M}^{2}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{M}^{-1}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{M}^{-1}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{M}^{-3}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{M}^{-3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{M}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{M}^{2}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\mathbb{1}$

Thermodynamic

Unified SI2019 Planck
temperature $\Theta$ $\text{K}$ $\text{M}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\text{M}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{M}^{3}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{M}^{2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{M}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{M}^{-2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{M}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{M}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{M}^{2}$

Molar

Unified SI2019 Planck
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\text{M}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{M}^{4}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-4}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\text{M}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\mathbb{1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{M}^{-2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{M}^{-4}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{M}^{2}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{M}^{-3}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{M}^{2}$

Photometric

Unified SI2019 Planck
luminous flux $\text{J}$ $\text{cd}$ $\text{M}^{2}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{M}^{2}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{M}^{4}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{M}^{4}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{M}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{M}^{3}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$