SI2019 -> PlanckGauss

data derived with UnitSystems.jl DOI

Kinematic Ratios

Name Quantity Product
angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
solid angle $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
time $1.854858(20) \times 10^{43}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
angular time $1.854858(20) \times 10^{43}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{s}\right]$ $\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
length $6.187141(68) \times 10^{34}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau$
angular length $6.187141(68) \times 10^{34}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}\right]$ $\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot \tau$
area $3.828072(84) \times 10^{69}$ $\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$
angular area $3.828072(84) \times 10^{69}$ $\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$
volume $2.368482(78) \times 10^{104}$ $\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$
wavenumber $1.616255(18) \times 10^{-35}$ $\left[\text{m}_\text{P}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$
angular wavenumber $1.616255(18) \times 10^{-35}$ $\left[\text{m}_\text{P}\right]/\left[\text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$
fuel efficiency $2.612281(58) \times 10^{-70}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$
number density $4.22211(14) \times 10^{-105}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$
frequency $5.391247(59) \times 10^{-44}$ $\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
angular frequency $5.391247(59) \times 10^{-44}$ $\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
frequency drift $2.906555(64) \times 10^{-87}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{Hz} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$
stagnance $2.99792458 \times 10^{8}$ $\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ $\text{c}$
speed $3.3356409519815204 \times 10^{-9}$ $\left[\mathbb{1}\right]/\left[\text{m}\cdot \text{s}^{-1}\right]$ $\text{c}^{-1}$
acceleration $1.798327(20) \times 10^{-52}$ $\left[\text{m}_\text{P}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}$
jerk $9.69522(21) \times 10^{-96}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}\cdot \text{s}^{-3}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-2}\tau^{-2}$
snap $5.22693(17) \times 10^{-139}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{m}\cdot \text{s}^{-4}\right]$ $\hbar^{3}\text{c}^{-7}\text{m}_\text{P}^{-3}\tau^{-3}$
crackle $2.81797(12) \times 10^{-182}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{m}\cdot \text{s}^{-5}\right]$ $\hbar^{4}\text{c}^{-9}\text{m}_\text{P}^{-4}\tau^{-4}$
pop $1.519237(84) \times 10^{-225}$ $\left[\text{m}_\text{P}^{5}\right]/\left[\text{m}\cdot \text{s}^{-6}\right]$ $\hbar^{5}\text{c}^{-11}\text{m}_\text{P}^{-5}\tau^{-5}$
volume flow $1.276907(28) \times 10^{61}$ $\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ $\hbar^{-2}\text{c}\cdot \text{m}_\text{P}^{2}\tau^{2}$
etendue $3.828072(84) \times 10^{69}$ $\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$
photon intensity $5.391247(59) \times 10^{-44}$ $\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
photon irradiance $4.845411(53) \times 10^{-27}$ $\left[\text{m}_\text{P}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1}$
photon radiance $4.845411(53) \times 10^{-27}$ $\left[\text{m}_\text{P}\right]/\left[\text{Hz} \cdot \text{m}^{-2}\right]$ $\hbar\cdot \text{m}_\text{P}^{-1}\tau^{-1}$

Mechanical Ratios

Name Quantity Product
inertia $4.594672(51) \times 10^{7}$ $\left[\text{m}_\text{P}\right]/\left[\text{kg}\right]$ $\text{m}_\text{P}^{-1}$
mass $4.594672(51) \times 10^{7}$ $\left[\text{m}_\text{P}\right]/\left[\text{kg}\right]$ $\text{m}_\text{P}^{-1}$
mass flow $2.477101(55) \times 10^{-36}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}$
linear density $7.42616(16) \times 10^{-28}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{kg}\cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}$
area density $1.200257(40) \times 10^{-62}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-2}\right]$ $\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-3}\tau^{-2}$
density $1.939922(86) \times 10^{-97}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-3}\right]$ $\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$
specific weight $3.48861(19) \times 10^{-149}$ $\left[\text{m}_\text{P}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}\right]$ $\hbar^{4}\text{c}^{-6}\text{m}_\text{P}^{-5}\tau^{-4}$
specific volume $5.15485(23) \times 10^{96}$ $\left[\text{m}_\text{P}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$
force $8.26272(18) \times 10^{-45}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{N}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$
specific force $1.798327(20) \times 10^{-52}$ $\left[\text{m}_\text{P}\right]/\left[\text{m}\cdot \text{s}^{-2}\right]$ $\hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}$
gravity force $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
pressure $2.158455(95) \times 10^{-114}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{Pa}\right]$ $\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$
compressibility $4.63294(20) \times 10^{113}$ $\left[\text{m}_\text{P}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ $\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau^{3}$
viscosity $4.00363(13) \times 10^{-71}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{Pa} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-2}$
diffusivity $2.063808(23) \times 10^{26}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ $\hbar^{-1}\text{m}_\text{P}\cdot \tau$
rotational inertia $1.758873(19) \times 10^{77}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{kg}\cdot \text{m}^{2}\right]$ $\hbar^{-2}\text{c}^{2}\text{m}_\text{P}\cdot \tau^{2}$
impulse $0.1532618(17)$ $\left[\text{m}_\text{P}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\text{m}_\text{P}^{-1}$
momentum $0.1532618(17)$ $\left[\text{m}_\text{P}\right]/\left[\text{N} \cdot \text{s}\right]$ $\text{c}^{-1}\text{m}_\text{P}^{-1}$
angular momentum $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
yank $4.45464(15) \times 10^{-88}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-2}$
energy $5.112262(56) \times 10^{-10}$ $\left[\text{m}_\text{P}\right]/\left[\text{J}\right]$ $\text{c}^{-2}\text{m}_\text{P}^{-1}$
specific energy $1.1126500560536183 \times 10^{-17}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{kg}^{-1}\right]$ $\text{c}^{-2}$
action $9.482521562467288 \times 10^{33}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{s}\right]$ $\hbar^{-1}\tau$
fluence $1.335467(44) \times 10^{-79}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{N} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-2}$
power $2.756147(61) \times 10^{-53}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$
power density $1.163676(64) \times 10^{-157}$ $\left[\text{m}_\text{P}^{5}\right]/\left[\text{W} \cdot \text{m}^{-3}\right]$ $\hbar^{4}\text{c}^{-7}\text{m}_\text{P}^{-5}\tau^{-4}$
irradiance $7.19983(32) \times 10^{-123}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-3}$
radiance $7.19983(32) \times 10^{-123}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{W} \cdot \text{m}^{-2}\right]$ $\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-3}$
radiant intensity $2.756147(61) \times 10^{-53}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{W}\right]$ $\hbar\cdot \text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$
spectral flux $4.45464(15) \times 10^{-88}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{N} \cdot \text{s}^{-1}\right]$ $\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-2}$
spectral exposure $2.477101(55) \times 10^{-36}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}\right]$ $\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}$
sound exposure $8.64165(67) \times 10^{-185}$ $\left[\text{m}_\text{P}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ $\hbar^{5}\text{c}^{-8}\text{m}_\text{P}^{-7}\tau^{-5}$
impedance $1.69038(11) \times 10^{-175}$ $\left[\text{m}_\text{P}^{6}\right]/\left[\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}\right]$ $\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-5}$
specific impedance $6.47088(29) \times 10^{-106}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}\right]$ $\hbar^{3}\text{c}^{-4}\text{m}_\text{P}^{-4}\tau^{-3}$
admittance $5.91584(39) \times 10^{174}$ $\left[\text{m}_\text{P}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ $\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{5}$
compliance $7.48802(25) \times 10^{78}$ $\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m} \cdot \text{N}^{-1}\right]$ $\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{2}$
inertance $3.13541(17) \times 10^{-132}$ $\left[\text{m}_\text{P}^{5}\right]/\left[\text{kg}\cdot \text{m}^{-4}\right]$ $\hbar^{4}\text{c}^{-4}\text{m}_\text{P}^{-5}\tau^{-4}$

Electromagnetic Ratios

Name Quantity Product
charge $5.33178061139(41) \times 10^{17}$ $\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}$
charge density $2.251138(74) \times 10^{-87}$ $\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ $\hbar^{3}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-3}$
linear charge density $8.617519(95) \times 10^{-18}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
exposure $1.160427(13) \times 10^{10}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ $\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$
mobility $0.197883763737(15)$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2 \text{s}^{-1} \text{V}^{-1}\right]$ $\hbar^{-1}\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\tau$
current $2.874495(32) \times 10^{-26}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
current density $7.50899(25) \times 10^{-96}$ $\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ $\hbar^{3}\text{c}^{-4}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-3}$
resistance $0.0333564095016(51)$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ $\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$
conductance $29.9792458163(46)$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ $\hbar\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
resistivity $2.063808(23) \times 10^{33}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\Omega \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{2}$
conductivity $4.845411(53) \times 10^{-34}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^{-1}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-2}$
capacitance $5.560725(61) \times 10^{44}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ $\text{c}^{2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}$
inductance $6.187141(68) \times 10^{41}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{2}$
reluctance $1.616255(18) \times 10^{-42}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{-1}\tau^{-2}$
permeance $6.187141(68) \times 10^{41}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ $\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot \tau^{2}$
permittivity $8.9875517923(14) \times 10^{9}$ $\left[\text{e}_\text{n}^{2}\right]/\left[\text{F} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}\cdot \text{e}^{-2}\alpha\cdot \tau^{-1}$
permeability $9.9999999945(15) \times 10^{6}$ $\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H} \cdot \text{m}^{-1}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{2}\alpha^{-1}\tau$
susceptibility $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
specific susceptibility $5.15485(23) \times 10^{96}$ $\left[\text{m}_\text{P}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$
demagnetizing factor $1.0$ $\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ $1$
vector potential $2.874495(32) \times 10^{-19}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}^{-1}\right]$ $\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
electric potential $9.58828(11) \times 10^{-28}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ $\text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-1}$
magnetic potential $2.874495(32) \times 10^{-26}$ $\left[\text{m}_\text{P}\cdot \text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$
electric field $1.549711(34) \times 10^{-62}$ $\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}^{-1}\right]$ $\hbar\cdot \text{c}^{-3}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1}$
magnetic field $4.64592(10) \times 10^{-61}$ $\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ $\hbar^{2}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$
electric flux $5.93240599289(45) \times 10^{7}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V} \cdot \text{m}\right]$ $\hbar^{-1}\text{c}^{-1}\text{e}\cdot \alpha^{-1/2}\tau$
magnetic flux $1.77849057446(14) \times 10^{16}$ $\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ $\hbar^{-1}\text{e}\cdot \alpha^{-1/2}\tau$
electric displacement $1.392811(31) \times 10^{-52}$ $\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ $\hbar^{2}\text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$
magnetic flux density $4.64592(10) \times 10^{-54}$ $\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ $\hbar\cdot \text{c}^{-2}\text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1}$
electric dipole moment $3.298848(36) \times 10^{52}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{C}\right]$ $\hbar^{-1}\text{c}\cdot \text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
magnetic dipole moment $1.100377(12) \times 10^{44}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{J} \cdot \text{T}^{-1}\right]$ $\hbar^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot \tau$
electric polarizability $2.128686(70) \times 10^{114}$ $\left[\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ $\hbar^{-2}\text{c}^{4}\text{e}^{-2}\alpha\cdot \text{m}_\text{P}^{3}\tau^{2}$
magnetic polarizability $2.368482(78) \times 10^{104}$ $\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\right]$ $\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$
magnetic moment $1.100377(12) \times 10^{51}$ $\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot \text{m}\right]$ $\hbar^{-2}\text{c}\cdot \text{e}\cdot \alpha^{-1/2}\text{m}_\text{P}\cdot \tau^{2}$
specific magnetization $4.175542(92) \times 10^{-44}$ $\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot \text{C}\right]$ $\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$
pole strength $1.77849057543(14) \times 10^{9}$ $\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot \text{s}^{-1}\text{C}\right]$ $\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}$

Thermodynamic Ratios

Name Quantity Product
temperature $7.058239(78) \times 10^{-33}$ $\left[\text{m}_\text{P}\right]/\left[\text{K}\right]$ $\text{k}_\text{B}\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}$
entropy $7.24297051603992 \times 10^{22}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}$
specific entropy $1.576385(17) \times 10^{15}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{m}_\text{P}$
volume heat capacity $3.05806(10) \times 10^{-82}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$
thermal conductivity $6.31126(14) \times 10^{-56}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{W} \cdot \text{m}^{-1} \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$
thermal conductance $3.904865(43) \times 10^{-21}$ $\left[\text{m}_\text{P}\right]/\left[\text{W} \cdot \text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\hbar\cdot \text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$
thermal resistivity $1.584470(35) \times 10^{55}$ $\left[\text{m}_\text{P}^{-2}\right]/\left[\text{K} \cdot \text{m} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{2}\tau^{2}$
thermal resistance $2.560908(28) \times 10^{20}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{K} \cdot \text{W}^{-1}\right]$ $\text{k}_\text{B}\cdot \hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot \tau$
thermal expansion $1.416784(16) \times 10^{32}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{K}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{P}$
lapse rate $1.140792(25) \times 10^{-67}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ $\text{k}_\text{B}\cdot \hbar\cdot \text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$

Molar Ratios

Name Quantity Product
molar mass $1000.000000340000000(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}\cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molality $0.00099999999966(31)$ $\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}2$
molar amount $45946.72(51)$ $\left[\text{m}_\text{P}\right]/\left[\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar\cdot \text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$
molarity $1.939922(86) \times 10^{-100}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$
molar volume $5.15485(23) \times 10^{99}$ $\left[\text{m}_\text{P}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau^{3}2^{-1}$
molar entropy $1.576385(17) \times 10^{18}$ $\left[\text{m}_\text{P}^{-1}\right]/\left[\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}\right]$ $\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}\cdot 2^{-1}$
molar energy $1.11265005644(34) \times 10^{-14}$ $\left[\mathbb{1}\right]/\left[\text{J} \cdot \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot 2^{-1}$
molar conductivity $4.036977(89) \times 10^{31}$ $\left[\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot \text{m}^2 \text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{2}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot \text{m}_\text{P}^{2}2^{-1}$
molar susceptibility $5.15485(23) \times 10^{99}$ $\left[\text{m}_\text{P}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{4}\tau^{3}2^{-1}$
catalysis $2.477101(55) \times 10^{-39}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{kat}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$
specificity $2.779105(92) \times 10^{56}$ $\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ $\text{N}_\text{A}^{-1}\hbar^{-3}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot \text{m}_\text{P}^{3}\tau^{2}2^{-1}$
diffusion flux $2.226308(49) \times 10^{-22}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot \text{mol}\right]$ $\text{N}_\text{A}\cdot \hbar^{2}\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$

Photometric Ratios

Name Quantity Product
luminous flux $4.035238(89) \times 10^{-56}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}$
luminous intensity $4.035238(89) \times 10^{-56}$ $\left[\text{m}_\text{P}^{2}\right]/\left[\text{cd}\right]$ $\hbar\cdot \text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}$
luminance $1.054118(46) \times 10^{-125}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}$
illuminance $1.054118(46) \times 10^{-125}$ $\left[\text{m}_\text{P}^{4}\right]/\left[\text{lx}\right]$ $\hbar^{3}\text{c}^{-6}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}$
luminous energy $7.484794(83) \times 10^{-13}$ $\left[\text{m}_\text{P}\right]/\left[\text{s}\cdot \text{lm}\right]$ $\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-1}$
luminous exposure $1.955239(65) \times 10^{-82}$ $\left[\text{m}_\text{P}^{3}\right]/\left[\text{lx} \cdot \text{s}\right]$ $\hbar^{2}\text{c}^{-4}\text{K}_\text{cd}^{-1}\text{m}_\text{P}^{-3}\tau^{-2}$
luminous efficacy $0.0014640866354352104$ $\left[\mathbb{1}\right]/\left[\text{lm} \cdot \text{W}^{-1}\right]$ $\text{K}_\text{cd}^{-1}$

Kinematic

Unified SI2019 PlanckGauss
angle $\text{A}$ $\mathbb{1}$ $\mathbb{1}$
solid angle $\text{A}^{2}$ $\mathbb{1}$ $\mathbb{1}$
time $\text{T}$ $\text{s}$ $\text{m}_\text{P}^{-1}$
angular time $\text{T}\cdot \text{A}^{-1}$ $\text{s}$ $\text{m}_\text{P}^{-1}$
length $\text{L}$ $\text{m}$ $\text{m}_\text{P}^{-1}$
angular length $\text{L}\cdot \text{A}^{-1}$ $\text{m}$ $\text{m}_\text{P}^{-1}$
area $\text{L}^{2}$ $\text{m}^{2}$ $\text{m}_\text{P}^{-2}$
angular area $\text{L}^{2}\text{A}^{-2}$ $\text{m}^{2}$ $\text{m}_\text{P}^{-2}$
volume $\text{L}^{3}$ $\text{m}^{3}$ $\text{m}_\text{P}^{-3}$
wavenumber $\text{L}^{-1}$ $\text{m}^{-1}$ $\text{m}_\text{P}$
angular wavenumber $\text{L}^{-1}\text{A}$ $\text{m}^{-1}$ $\text{m}_\text{P}$
fuel efficiency $\text{L}^{-2}$ $\text{m}^{-2}$ $\text{m}_\text{P}^{2}$
number density $\text{L}^{-3}$ $\text{m}^{-3}$ $\text{m}_\text{P}^{3}$
frequency $\text{T}^{-1}$ $\text{Hz}$ $\text{m}_\text{P}$
angular frequency $\text{T}^{-1}\text{A}$ $\text{Hz}$ $\text{m}_\text{P}$
frequency drift $\text{T}^{-2}$ $\text{Hz} \cdot \text{s}^{-1}$ $\text{m}_\text{P}^{2}$
stagnance $\text{L}^{-1}\text{T}$ $\text{m}^{-1}\text{s}$ $\mathbb{1}$
speed $\text{L}\cdot \text{T}^{-1}$ $\text{m}\cdot \text{s}^{-1}$ $\mathbb{1}$
acceleration $\text{L}\cdot \text{T}^{-2}$ $\text{m}\cdot \text{s}^{-2}$ $\text{m}_\text{P}$
jerk $\text{L}\cdot \text{T}^{-3}$ $\text{m}\cdot \text{s}^{-3}$ $\text{m}_\text{P}^{2}$
snap $\text{L}\cdot \text{T}^{-4}$ $\text{m}\cdot \text{s}^{-4}$ $\text{m}_\text{P}^{3}$
crackle $\text{L}\cdot \text{T}^{-5}$ $\text{m}\cdot \text{s}^{-5}$ $\text{m}_\text{P}^{4}$
pop $\text{L}\cdot \text{T}^{-6}$ $\text{m}\cdot \text{s}^{-6}$ $\text{m}_\text{P}^{5}$
volume flow $\text{L}^{3}\text{T}^{-1}$ $\text{m}^{3}\text{s}^{-1}$ $\text{m}_\text{P}^{-2}$
etendue $\text{L}^{2}\text{A}^{2}$ $\text{m}^{2}$ $\text{m}_\text{P}^{-2}$
photon intensity $\text{T}^{-1}\text{A}^{-2}$ $\text{Hz}$ $\text{m}_\text{P}$
photon irradiance $\text{L}^{-2}\text{T}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{m}_\text{P}$
photon radiance $\text{L}^{-2}\text{T}\cdot \text{A}^{-2}$ $\text{Hz} \cdot \text{m}^{-2}$ $\text{m}_\text{P}$

Mechanical

Unified SI2019 PlanckGauss
inertia $\text{F}\cdot \text{L}^{-1}\text{T}^{2}$ $\text{kg}$ $\text{m}_\text{P}$
mass $\text{M}$ $\text{kg}$ $\text{m}_\text{P}$
mass flow $\text{M}\cdot \text{T}^{-1}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{m}_\text{P}^{2}$
linear density $\text{M}\cdot \text{L}^{-1}$ $\text{kg}\cdot \text{m}^{-1}$ $\text{m}_\text{P}^{2}$
area density $\text{M}\cdot \text{L}^{-2}$ $\text{kg}\cdot \text{m}^{-2}$ $\text{m}_\text{P}^{3}$
density $\text{M}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-3}$ $\text{m}_\text{P}^{4}$
specific weight $\text{F}\cdot \text{L}^{-3}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-2}$ $\text{m}_\text{P}^{5}$
specific volume $\text{M}^{-1}\text{L}^{3}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{m}_\text{P}^{-4}$
force $\text{F}$ $\text{N}$ $\text{m}_\text{P}^{2}$
specific force $\text{F}\cdot \text{M}^{-1}$ $\text{m}\cdot \text{s}^{-2}$ $\text{m}_\text{P}$
gravity force $\text{F}^{-1}\text{M}\cdot \text{L}\cdot \text{T}^{-2}$ $\mathbb{1}$ $\mathbb{1}$
pressure $\text{F}\cdot \text{L}^{-2}$ $\text{Pa}$ $\text{m}_\text{P}^{4}$
compressibility $\text{F}^{-1}\text{L}^{2}$ $\text{Pa}^{-1}$ $\text{m}_\text{P}^{-4}$
viscosity $\text{F}\cdot \text{L}^{-2}\text{T}$ $\text{Pa} \cdot \text{s}$ $\text{m}_\text{P}^{3}$
diffusivity $\text{L}^{2}\text{T}^{-1}$ $\text{m}^{2}\text{s}^{-1}$ $\text{m}_\text{P}^{-1}$
rotational inertia $\text{M}\cdot \text{L}^{2}$ $\text{kg}\cdot \text{m}^{2}$ $\text{m}_\text{P}^{-1}$
impulse $\text{F}\cdot \text{T}$ $\text{N} \cdot \text{s}$ $\text{m}_\text{P}$
momentum $\text{M}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}$ $\text{m}_\text{P}$
angular momentum $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{A}^{-1}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
yank $\text{M}\cdot \text{L}\cdot \text{T}^{-3}$ $\text{N} \cdot \text{s}^{-1}$ $\text{m}_\text{P}^{3}$
energy $\text{F}\cdot \text{L}$ $\text{J}$ $\text{m}_\text{P}$
specific energy $\text{F}\cdot \text{M}^{-1}\text{L}$ $\text{J} \cdot \text{kg}^{-1}$ $\mathbb{1}$
action $\text{F}\cdot \text{L}\cdot \text{T}$ $\text{J} \cdot \text{s}$ $\mathbb{1}$
fluence $\text{F}\cdot \text{L}^{-1}$ $\text{N} \cdot \text{m}^{-1}$ $\text{m}_\text{P}^{3}$
power $\text{F}\cdot \text{L}\cdot \text{T}^{-1}$ $\text{W}$ $\text{m}_\text{P}^{2}$
power density $\text{F}\cdot \text{L}^{-2}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-3}$ $\text{m}_\text{P}^{5}$
irradiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}$ $\text{W} \cdot \text{m}^{-2}$ $\text{m}_\text{P}^{4}$
radiance $\text{F}\cdot \text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ $\text{W} \cdot \text{m}^{-2}$ $\text{m}_\text{P}^{4}$
radiant intensity $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ $\text{W}$ $\text{m}_\text{P}^{2}$
spectral flux $\text{F}\cdot \text{T}^{-1}$ $\text{N} \cdot \text{s}^{-1}$ $\text{m}_\text{P}^{3}$
spectral exposure $\text{F}\cdot \text{L}^{-1}\text{T}$ $\text{J} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ $\text{m}_\text{P}^{2}$
sound exposure $\text{F}^{2}\text{L}^{-4}\text{T}$ $\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ $\text{m}_\text{P}^{7}$
impedance $\text{F}\cdot \text{L}^{-5}\text{T}$ $\text{kg}\cdot \text{m}^{-4}\text{s}^{-1}$ $\text{m}_\text{P}^{6}$
specific impedance $\text{F}\cdot \text{L}^{-3}\text{T}$ $\text{kg}\cdot \text{m}^{-2}\text{s}^{-1}$ $\text{m}_\text{P}^{4}$
admittance $\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ $\text{kg}^{-1}\text{m}^{4}\text{s}$ $\text{m}_\text{P}^{-6}$
compliance $\text{M}^{-1}\text{T}^{2}$ $\text{m} \cdot \text{N}^{-1}$ $\text{m}_\text{P}^{-3}$
inertance $\text{M}\cdot \text{L}^{-4}$ $\text{kg}\cdot \text{m}^{-4}$ $\text{m}_\text{P}^{5}$

Electromagnetic

Unified SI2019 PlanckGauss
charge $\text{Q}$ $\text{C}$ $\text{e}_\text{n}$
charge density $\text{L}^{-3}\text{Q}$ $\text{m}^{-3}\text{C}$ $\text{m}_\text{P}^{3}\text{e}_\text{n}$
linear charge density $\text{L}^{-1}\text{Q}$ $\text{m}^{-1}\text{C}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$
exposure $\text{M}^{-1}\text{Q}$ $\text{kg}^{-1}\text{C}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$
mobility $\text{F}\cdot \text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ $\text{m}^2 \text{s}^{-1} \text{V}^{-1}$ $\text{e}_\text{n}^{-1}$
current $\text{T}^{-1}\text{Q}$ $\text{s}^{-1}\text{C}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$
current density $\text{L}^{-2}\text{T}^{-1}\text{Q}$ $\text{m}^{-2}\text{s}^{-1}\text{C}$ $\text{m}_\text{P}^{3}\text{e}_\text{n}$
resistance $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ $\Omega$ $\text{e}_\text{n}^{-2}$
conductance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ $\text{S}$ $\text{e}_\text{n}^{2}$
resistivity $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ $\Omega \cdot \text{m}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$
conductivity $\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ $\text{S} \cdot \text{m}^{-1}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}$
capacitance $\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ $\text{F}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}$
inductance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ $\text{H}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$
reluctance $\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot \text{C}^{-2}$ $\text{H}^{-1}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{2}$
permeance $\text{F}\cdot \text{L}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$
permittivity $\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ $\text{F} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{2}$
permeability $\text{F}\cdot \text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ $\text{H} \cdot \text{m}^{-1}$ $\text{e}_\text{n}^{-2}$
susceptibility $\text{R}^{-1}$ $\mathbb{1}$ $\mathbb{1}$
specific susceptibility $\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{kg}^{-1}\text{m}^{3}$ $\text{m}_\text{P}^{-4}$
demagnetizing factor $\text{R}$ $\mathbb{1}$ $\mathbb{1}$
vector potential $\text{F}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}^{-1}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}$
electric potential $\text{F}\cdot \text{L}\cdot \text{Q}^{-1}$ $\text{V}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}^{-1}$
magnetic potential $\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{s}^{-1}\text{C}$ $\text{m}_\text{P}\cdot \text{e}_\text{n}$
electric field $\text{F}\cdot \text{Q}^{-1}$ $\text{V} \cdot \text{m}^{-1}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$
magnetic field $\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot \text{R}\cdot \text{C}^{-1}$ $\text{m}^{-1}\text{s}^{-1}\text{C}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$
electric flux $\text{F}\cdot \text{L}^{2}\text{Q}^{-1}$ $\text{V} \cdot \text{m}$ $\text{e}_\text{n}^{-1}$
magnetic flux $\text{F}\cdot \text{L}\cdot \text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb}$ $\text{e}_\text{n}^{-1}$
electric displacement $\text{L}^{-2}\text{Q}\cdot \text{R}$ $\text{m}^{-2}\text{C}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$
magnetic flux density $\text{F}\cdot \text{L}^{-1}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{T}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$
electric dipole moment $\text{L}\cdot \text{Q}$ $\text{m}\cdot \text{C}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$
magnetic dipole moment $\text{L}^{2}\text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{J} \cdot \text{T}^{-1}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}$
electric polarizability $\text{F}^{-1}\text{L}\cdot \text{Q}^{2}$ $\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ $\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}$
magnetic polarizability $\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}$ $\text{m}_\text{P}^{-3}$
magnetic moment $\text{F}\cdot \text{L}^{2}\text{T}\cdot \text{Q}^{-1}\text{C}$ $\text{Wb} \cdot \text{m}$ $\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}$
specific magnetization $\text{F}^{-1}\text{M}\cdot \text{L}^{-2}\text{T}^{-1}\text{Q}\cdot \text{C}^{-1}$ $\text{m}^{-3}\text{s}\cdot \text{C}$ $\text{m}_\text{P}^{2}\text{e}_\text{n}$
pole strength $\text{L}\cdot \text{T}^{-1}\text{Q}\cdot \text{A}^{-1}\text{C}^{-1}$ $\text{m}\cdot \text{s}^{-1}\text{C}$ $\text{e}_\text{n}$

Thermodynamic

Unified SI2019 PlanckGauss
temperature $\Theta$ $\text{K}$ $\text{m}_\text{P}$
entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1}$ $\mathbb{1}$
specific entropy $\text{F}\cdot \text{M}^{-1}\text{L}\cdot \Theta^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{kg}^{-1}$ $\text{m}_\text{P}^{-1}$
volume heat capacity $\text{F}\cdot \text{L}^{-2}\Theta^{-1}$ $\text{kg}\cdot \text{m}^{-1}\text{s}^{-2}\text{K}^{-1}$ $\text{m}_\text{P}^{3}$
thermal conductivity $\text{F}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{m}^{-1} \text{K}^{-1}$ $\text{m}_\text{P}^{2}$
thermal conductance $\text{F}\cdot \text{L}\cdot \text{T}^{-1}\Theta^{-1}$ $\text{W} \cdot \text{K}^{-1}$ $\text{m}_\text{P}$
thermal resistivity $\text{F}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{m} \cdot \text{W}^{-1}$ $\text{m}_\text{P}^{-2}$
thermal resistance $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \Theta$ $\text{K} \cdot \text{W}^{-1}$ $\text{m}_\text{P}^{-1}$
thermal expansion $\Theta^{-1}$ $\text{K}^{-1}$ $\text{m}_\text{P}^{-1}$
lapse rate $\text{L}^{-1}\Theta$ $\text{m}^{-1}\text{K}$ $\text{m}_\text{P}^{2}$

Molar

Unified SI2019 PlanckGauss
molar mass $\text{M}\cdot \text{N}^{-1}$ $\text{kg}\cdot \text{mol}^{-1}$ $\mathbb{1}$
molality $\text{M}^{-1}\text{N}$ $\text{kg}^{-1}\text{mol}$ $\mathbb{1}$
molar amount $\text{N}$ $\text{mol}$ $\text{m}_\text{P}$
molarity $\text{L}^{-3}\text{N}$ $\text{m}^{-3}\text{mol}$ $\text{m}_\text{P}^{4}$
molar volume $\text{L}^{3}\text{N}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{m}_\text{P}^{-4}$
molar entropy $\text{F}\cdot \text{L}\cdot \Theta^{-1}\text{N}^{-1}$ $\text{J} \cdot \text{K}^{-1} \text{mol}^{-1}$ $\text{m}_\text{P}^{-1}$
molar energy $\text{F}\cdot \text{L}\cdot \text{N}^{-1}$ $\text{J} \cdot \text{mol}^{-1}$ $\mathbb{1}$
molar conductivity $\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ $\text{S} \cdot \text{m}^2 \text{mol}^{-1}$ $\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}$
molar susceptibility $\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ $\text{m}^{3}\text{mol}^{-1}$ $\text{m}_\text{P}^{-4}$
catalysis $\text{T}^{-1}\text{N}$ $\text{kat}$ $\text{m}_\text{P}^{2}$
specificity $\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ $\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ $\text{m}_\text{P}^{-3}$
diffusion flux $\text{L}^{-2}\text{T}\cdot \text{N}$ $\text{m}^{-2}\text{s}\cdot \text{mol}$ $\text{m}_\text{P}^{2}$

Photometric

Unified SI2019 PlanckGauss
luminous flux $\text{J}$ $\text{cd}$ $\text{m}_\text{P}^{2}$
luminous intensity $\text{J}\cdot \text{A}^{-2}$ $\text{cd}$ $\text{m}_\text{P}^{2}$
luminance $\text{L}^{-2}\text{J}\cdot \text{A}^{-2}$ $\text{lx}$ $\text{m}_\text{P}^{4}$
illuminance $\text{L}^{-2}\text{J}$ $\text{lx}$ $\text{m}_\text{P}^{4}$
luminous energy $\text{T}\cdot \text{J}$ $\text{s}\cdot \text{lm}$ $\text{m}_\text{P}$
luminous exposure $\text{L}^{-2}\text{T}\cdot \text{J}$ $\text{lx} \cdot \text{s}$ $\text{m}_\text{P}^{3}$
luminous efficacy $\text{F}^{-1}\text{L}^{-1}\text{T}\cdot \text{J}$ $\text{lm} \cdot \text{W}^{-1}$ $\mathbb{1}$