Name |
Quantity |
Product |
angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
solid angle |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
time |
$1.854858(20) \times
10^{43}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{s}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
angular time |
$1.854858(20) \times
10^{43}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{s}\right]$ |
$\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
length |
$6.187141(68) \times
10^{34}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau$ |
angular length |
$6.187141(68) \times
10^{34}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}\right]$ |
$\hbar^{-1}\text{c}\cdot \text{m}_\text{P}\cdot
\tau$ |
area |
$3.828072(84) \times
10^{69}$
$\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$ |
angular area |
$3.828072(84) \times
10^{69}$
$\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$ |
volume |
$2.368482(78) \times
10^{104}$
$\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$ |
wavenumber |
$1.616255(18) \times
10^{-35}$
$\left[\text{m}_\text{P}\right]/\left[\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular wavenumber |
$1.616255(18) \times
10^{-35}$
$\left[\text{m}_\text{P}\right]/\left[\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-1}\tau^{-1}$ |
fuel efficiency |
$2.612281(58) \times
10^{-70}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
number density |
$4.22211(14) \times
10^{-105}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{m}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$ |
frequency |
$5.391247(59) \times
10^{-44}$
$\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
angular frequency |
$5.391247(59) \times
10^{-44}$
$\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
frequency drift |
$2.906555(64) \times
10^{-87}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{Hz}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-2}$ |
stagnance |
$2.99792458 \times
10^{8}$
$\left[\mathbb{1}\right]/\left[\text{m}^{-1}\text{s}\right]$ |
$\text{c}$ |
speed |
$3.3356409519815204
\times 10^{-9}$
$\left[\mathbb{1}\right]/\left[\text{m}\cdot
\text{s}^{-1}\right]$ |
$\text{c}^{-1}$ |
acceleration |
$1.798327(20) \times
10^{-52}$
$\left[\text{m}_\text{P}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}$ |
jerk |
$9.69522(21) \times
10^{-96}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}\cdot
\text{s}^{-3}\right]$ |
$\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-2}\tau^{-2}$ |
snap |
$5.22693(17) \times
10^{-139}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{m}\cdot
\text{s}^{-4}\right]$ |
$\hbar^{3}\text{c}^{-7}\text{m}_\text{P}^{-3}\tau^{-3}$ |
crackle |
$2.81797(12) \times
10^{-182}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{m}\cdot
\text{s}^{-5}\right]$ |
$\hbar^{4}\text{c}^{-9}\text{m}_\text{P}^{-4}\tau^{-4}$ |
pop |
$1.519237(84) \times
10^{-225}$
$\left[\text{m}_\text{P}^{5}\right]/\left[\text{m}\cdot
\text{s}^{-6}\right]$ |
$\hbar^{5}\text{c}^{-11}\text{m}_\text{P}^{-5}\tau^{-5}$ |
volume flow |
$1.276907(28) \times
10^{61}$
$\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{3}\text{s}^{-1}\right]$ |
$\hbar^{-2}\text{c}\cdot
\text{m}_\text{P}^{2}\tau^{2}$ |
etendue |
$3.828072(84) \times
10^{69}$
$\left[\text{m}_\text{P}^{-2}\right]/\left[\text{m}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}^{2}\tau^{2}$ |
photon intensity |
$5.391247(59) \times
10^{-44}$
$\left[\text{m}_\text{P}\right]/\left[\text{Hz}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
photon irradiance |
$4.845411(53) \times
10^{-27}$
$\left[\text{m}_\text{P}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\hbar\cdot
\text{m}_\text{P}^{-1}\tau^{-1}$ |
photon radiance |
$4.845411(53) \times
10^{-27}$
$\left[\text{m}_\text{P}\right]/\left[\text{Hz}
\cdot \text{m}^{-2}\right]$ |
$\hbar\cdot
\text{m}_\text{P}^{-1}\tau^{-1}$ |
Name |
Quantity |
Product |
inertia |
$4.594672(51) \times
10^{7}$
$\left[\text{m}_\text{P}\right]/\left[\text{kg}\right]$ |
$\text{m}_\text{P}^{-1}$ |
mass |
$4.594672(51) \times
10^{7}$
$\left[\text{m}_\text{P}\right]/\left[\text{kg}\right]$ |
$\text{m}_\text{P}^{-1}$ |
mass flow |
$2.477101(55) \times
10^{-36}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}$ |
linear density |
$7.42616(16) \times
10^{-28}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}$ |
area density |
$1.200257(40) \times
10^{-62}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{m}_\text{P}^{-3}\tau^{-2}$ |
density |
$1.939922(86) \times
10^{-97}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{kg}\cdot
\text{m}^{-3}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-4}\tau^{-3}$ |
specific weight |
$3.48861(19) \times
10^{-149}$
$\left[\text{m}_\text{P}^{5}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}\right]$ |
$\hbar^{4}\text{c}^{-6}\text{m}_\text{P}^{-5}\tau^{-4}$ |
specific volume |
$5.15485(23) \times
10^{96}$
$\left[\text{m}_\text{P}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$ |
force |
$8.26272(18) \times
10^{-45}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{N}\right]$ |
$\hbar\cdot
\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$ |
specific force |
$1.798327(20) \times
10^{-52}$
$\left[\text{m}_\text{P}\right]/\left[\text{m}\cdot
\text{s}^{-2}\right]$ |
$\hbar\cdot
\text{c}^{-3}\text{m}_\text{P}^{-1}\tau^{-1}$ |
gravity force |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
pressure |
$2.158455(95) \times
10^{-114}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{Pa}\right]$ |
$\hbar^{3}\text{c}^{-5}\text{m}_\text{P}^{-4}\tau^{-3}$ |
compressibility |
$4.63294(20) \times
10^{113}$
$\left[\text{m}_\text{P}^{-4}\right]/\left[\text{Pa}^{-1}\right]$ |
$\hbar^{-3}\text{c}^{5}\text{m}_\text{P}^{4}\tau^{3}$ |
viscosity |
$4.00363(13) \times
10^{-71}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{Pa}
\cdot \text{s}\right]$ |
$\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-2}$ |
diffusivity |
$2.063808(23) \times
10^{26}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{m}^{2}\text{s}^{-1}\right]$ |
$\hbar^{-1}\text{m}_\text{P}\cdot
\tau$ |
rotational inertia |
$1.758873(19) \times
10^{77}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{kg}\cdot
\text{m}^{2}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{m}_\text{P}\cdot
\tau^{2}$ |
impulse |
$0.1532618(17)$
$\left[\text{m}_\text{P}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\text{c}^{-1}\text{m}_\text{P}^{-1}$ |
momentum |
$0.1532618(17)$
$\left[\text{m}_\text{P}\right]/\left[\text{N}
\cdot \text{s}\right]$ |
$\text{c}^{-1}\text{m}_\text{P}^{-1}$ |
angular momentum |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
yank |
$4.45464(15) \times
10^{-88}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-2}$ |
energy |
$5.112262(56) \times
10^{-10}$
$\left[\text{m}_\text{P}\right]/\left[\text{J}\right]$ |
$\text{c}^{-2}\text{m}_\text{P}^{-1}$ |
specific energy |
$1.1126500560536183
\times 10^{-17}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{kg}^{-1}\right]$ |
$\text{c}^{-2}$ |
action |
$9.482521562467288
\times 10^{33}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{s}\right]$ |
$\hbar^{-1}\tau$ |
fluence |
$1.335467(44) \times
10^{-79}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{N}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-4}\text{m}_\text{P}^{-3}\tau^{-2}$ |
power |
$2.756147(61) \times
10^{-53}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{W}\right]$ |
$\hbar\cdot
\text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$ |
power density |
$1.163676(64) \times
10^{-157}$
$\left[\text{m}_\text{P}^{5}\right]/\left[\text{W}
\cdot \text{m}^{-3}\right]$ |
$\hbar^{4}\text{c}^{-7}\text{m}_\text{P}^{-5}\tau^{-4}$ |
irradiance |
$7.19983(32) \times
10^{-123}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-3}$ |
radiance |
$7.19983(32) \times
10^{-123}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{W}
\cdot \text{m}^{-2}\right]$ |
$\hbar^{3}\text{c}^{-6}\text{m}_\text{P}^{-4}\tau^{-3}$ |
radiant intensity |
$2.756147(61) \times
10^{-53}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{W}\right]$ |
$\hbar\cdot
\text{c}^{-4}\text{m}_\text{P}^{-2}\tau^{-1}$ |
spectral flux |
$4.45464(15) \times
10^{-88}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{N}
\cdot \text{s}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-5}\text{m}_\text{P}^{-3}\tau^{-2}$ |
spectral exposure |
$2.477101(55) \times
10^{-36}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{J}
\cdot \text{m}^{-2} \cdot
\text{Hz}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-2}\tau^{-1}$ |
sound exposure |
$8.64165(67) \times
10^{-185}$
$\left[\text{m}_\text{P}^{7}\right]/\left[\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}\right]$ |
$\hbar^{5}\text{c}^{-8}\text{m}_\text{P}^{-7}\tau^{-5}$ |
impedance |
$1.69038(11) \times
10^{-175}$
$\left[\text{m}_\text{P}^{6}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}\right]$ |
$\hbar^{5}\text{c}^{-6}\text{m}_\text{P}^{-6}\tau^{-5}$ |
specific impedance |
$6.47088(29) \times
10^{-106}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}\right]$ |
$\hbar^{3}\text{c}^{-4}\text{m}_\text{P}^{-4}\tau^{-3}$ |
admittance |
$5.91584(39) \times
10^{174}$
$\left[\text{m}_\text{P}^{-6}\right]/\left[\text{kg}^{-1}\text{m}^{4}\text{s}\right]$ |
$\hbar^{-5}\text{c}^{6}\text{m}_\text{P}^{6}\tau^{5}$ |
compliance |
$7.48802(25) \times
10^{78}$
$\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}
\cdot \text{N}^{-1}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{m}_\text{P}^{3}\tau^{2}$ |
inertance |
$3.13541(17) \times
10^{-132}$
$\left[\text{m}_\text{P}^{5}\right]/\left[\text{kg}\cdot
\text{m}^{-4}\right]$ |
$\hbar^{4}\text{c}^{-4}\text{m}_\text{P}^{-5}\tau^{-4}$ |
Name |
Quantity |
Product |
charge |
$5.33178061139(41)
\times 10^{17}$
$\left[\text{e}_\text{n}\right]/\left[\text{C}\right]$ |
$\text{e}^{-1}\alpha^{1/2}$ |
charge density |
$2.251138(74) \times
10^{-87}$
$\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{C}\right]$ |
$\hbar^{3}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-3}$ |
linear charge
density |
$8.617519(95) \times
10^{-18}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
exposure |
$1.160427(13) \times
10^{10}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{kg}^{-1}\text{C}\right]$ |
$\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}$ |
mobility |
$0.197883763737(15)$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{m}^2
\text{s}^{-1} \text{V}^{-1}\right]$ |
$\hbar^{-1}\text{c}^{-2}\text{e}\cdot
\alpha^{-1/2}\tau$ |
current |
$2.874495(32) \times
10^{-26}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
current density |
$7.50899(25) \times
10^{-96}$
$\left[\text{m}_\text{P}^{3}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{s}^{-1}\text{C}\right]$ |
$\hbar^{3}\text{c}^{-4}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-3}\tau^{-3}$ |
resistance |
$0.0333564095016(51)$
$\left[\text{e}_\text{n}^{-2}\right]/\left[\Omega\right]$ |
$\hbar^{-1}\text{e}^{2}\alpha^{-1}\tau$ |
conductance |
$29.9792458163(46)$
$\left[\text{e}_\text{n}^{2}\right]/\left[\text{S}\right]$ |
$\hbar\cdot
\text{e}^{-2}\alpha\cdot \tau^{-1}$ |
resistivity |
$2.063808(23) \times
10^{33}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\Omega
\cdot \text{m}\right]$ |
$\hbar^{-2}\text{c}\cdot
\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot
\tau^{2}$ |
conductivity |
$4.845411(53) \times
10^{-34}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}\right]/\left[\text{S} \cdot
\text{m}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{-1}\tau^{-2}$ |
capacitance |
$5.560725(61) \times
10^{44}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}\right]/\left[\text{F}\right]$ |
$\text{c}^{2}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}$ |
inductance |
$6.187141(68) \times
10^{41}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot
\tau^{2}$ |
reluctance |
$1.616255(18) \times
10^{-42}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}\right]/\left[\text{H}^{-1}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{-1}\tau^{-2}$ |
permeance |
$6.187141(68) \times
10^{41}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}\right]/\left[\text{H}\right]$ |
$\hbar^{-2}\text{c}^{2}\text{e}^{2}\alpha^{-1}\text{m}_\text{P}\cdot
\tau^{2}$ |
permittivity |
$8.9875517923(14)
\times 10^{9}$
$\left[\text{e}_\text{n}^{2}\right]/\left[\text{F}
\cdot \text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}\cdot \text{e}^{-2}\alpha\cdot
\tau^{-1}$ |
permeability |
$9.9999999945(15)
\times 10^{6}$
$\left[\text{e}_\text{n}^{-2}\right]/\left[\text{H}
\cdot \text{m}^{-1}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{2}\alpha^{-1}\tau$ |
susceptibility |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
specific
susceptibility |
$5.15485(23) \times
10^{96}$
$\left[\text{m}_\text{P}^{-4}\right]/\left[\text{kg}^{-1}\text{m}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{4}\tau^{3}$ |
demagnetizing factor |
$1.0$
$\left[\mathbb{1}\right]/\left[\mathbb{1}\right]$ |
$1$ |
vector potential |
$2.874495(32) \times
10^{-19}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}\right]/\left[\text{Wb} \cdot
\text{m}^{-1}\right]$ |
$\text{c}^{-1}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}$ |
electric potential |
$9.58828(11) \times
10^{-28}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}\right]/\left[\text{V}\right]$ |
$\text{c}^{-2}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-1}$ |
magnetic potential |
$2.874495(32) \times
10^{-26}$ $\left[\text{m}_\text{P}\cdot
\text{e}_\text{n}\right]/\left[\text{s}^{-1}\text{C}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
electric field |
$1.549711(34) \times
10^{-62}$
$\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{V}
\cdot \text{m}^{-1}\right]$ |
$\hbar\cdot
\text{c}^{-3}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1}$ |
magnetic field |
$4.64592(10) \times
10^{-61}$
$\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-1}\text{s}^{-1}\text{C}\right]$ |
$\hbar^{2}\text{c}^{-3}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
electric flux |
$5.93240599289(45)
\times 10^{7}$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{V}
\cdot \text{m}\right]$ |
$\hbar^{-1}\text{c}^{-1}\text{e}\cdot
\alpha^{-1/2}\tau$ |
magnetic flux |
$1.77849057446(14)
\times 10^{16}$
$\left[\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}\right]$ |
$\hbar^{-1}\text{e}\cdot
\alpha^{-1/2}\tau$ |
electric
displacement |
$1.392811(31) \times
10^{-52}$
$\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-2}\text{C}\right]$ |
$\hbar^{2}\text{c}^{-2}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
magnetic flux
density |
$4.64592(10) \times
10^{-54}$
$\left[\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}\right]/\left[\text{T}\right]$ |
$\hbar\cdot
\text{c}^{-2}\text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}^{-2}\tau^{-1}$ |
electric dipole
moment |
$3.298848(36) \times
10^{52}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{m}\cdot
\text{C}\right]$ |
$\hbar^{-1}\text{c}\cdot
\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot
\tau$ |
magnetic dipole
moment |
$1.100377(12) \times
10^{44}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}\right]/\left[\text{J}
\cdot \text{T}^{-1}\right]$ |
$\hbar^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}\cdot
\tau$ |
electric
polarizability |
$2.128686(70) \times
10^{114}$
$\left[\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}\right]/\left[\text{kg}^{-1}\text{s}^{2}\text{C}^{2}\right]$ |
$\hbar^{-2}\text{c}^{4}\text{e}^{-2}\alpha\cdot
\text{m}_\text{P}^{3}\tau^{2}$ |
magnetic
polarizability |
$2.368482(78) \times
10^{104}$
$\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\right]$ |
$\hbar^{-3}\text{c}^{3}\text{m}_\text{P}^{3}\tau^{3}$ |
magnetic moment |
$1.100377(12) \times
10^{51}$
$\left[\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}\right]/\left[\text{Wb}
\cdot \text{m}\right]$ |
$\hbar^{-2}\text{c}\cdot \text{e}\cdot
\alpha^{-1/2}\text{m}_\text{P}\cdot
\tau^{2}$ |
specific
magnetization |
$4.175542(92) \times
10^{-44}$
$\left[\text{m}_\text{P}^{2}\text{e}_\text{n}\right]/\left[\text{m}^{-3}\text{s}\cdot
\text{C}\right]$ |
$\hbar^{2}\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}\text{m}_\text{P}^{-2}\tau^{-2}$ |
pole strength |
$1.77849057543(14)
\times 10^{9}$
$\left[\text{e}_\text{n}\right]/\left[\text{m}\cdot
\text{s}^{-1}\text{C}\right]$ |
$\text{c}^{-1}\text{e}^{-1}\alpha^{1/2}$ |
Name |
Quantity |
Product |
temperature |
$7.058239(78) \times
10^{-33}$
$\left[\text{m}_\text{P}\right]/\left[\text{K}\right]$ |
$\text{k}_\text{B}\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}$ |
entropy |
$7.24297051603992
\times 10^{22}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}$ |
specific entropy |
$1.576385(17) \times
10^{15}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{kg}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{m}_\text{P}$ |
volume heat capacity |
$3.05806(10) \times
10^{-82}$
$\left[\text{m}_\text{P}^{3}\right]/\left[\text{kg}\cdot
\text{m}^{-1}\text{s}^{-2}\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{3}\text{c}^{-3}\text{m}_\text{P}^{-3}\tau^{-3}$ |
thermal conductivity |
$6.31126(14) \times
10^{-56}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{W}
\cdot \text{m}^{-1} \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar^{2}\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-2}$ |
thermal conductance |
$3.904865(43) \times
10^{-21}$
$\left[\text{m}_\text{P}\right]/\left[\text{W}
\cdot \text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\hbar\cdot
\text{c}^{-2}\text{m}_\text{P}^{-1}\tau^{-1}$ |
thermal resistivity |
$1.584470(35) \times
10^{55}$
$\left[\text{m}_\text{P}^{-2}\right]/\left[\text{K}
\cdot \text{m} \cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-2}\text{c}^{3}\text{m}_\text{P}^{2}\tau^{2}$ |
thermal resistance |
$2.560908(28) \times
10^{20}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{K}
\cdot \text{W}^{-1}\right]$ |
$\text{k}_\text{B}\cdot
\hbar^{-1}\text{c}^{2}\text{m}_\text{P}\cdot
\tau$ |
thermal expansion |
$1.416784(16) \times
10^{32}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{K}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{P}$ |
lapse rate |
$1.140792(25) \times
10^{-67}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-1}\text{K}\right]$ |
$\text{k}_\text{B}\cdot \hbar\cdot
\text{c}^{-3}\text{m}_\text{P}^{-2}\tau^{-1}$ |
Name |
Quantity |
Product |
molar mass |
$1000.000000340000000(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}\cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molality |
$0.00099999999966(31)$
$\left[\mathbb{1}\right]/\left[\text{kg}^{-1}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}2$ |
molar amount |
$45946.72(51)$
$\left[\text{m}_\text{P}\right]/\left[\text{mol}\right]$ |
$\text{N}_\text{A}\cdot \hbar\cdot
\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-1}2$ |
molarity |
$1.939922(86) \times
10^{-100}$
$\left[\text{m}_\text{P}^{4}\right]/\left[\text{m}^{-3}\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{4}\text{c}^{-4}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-4}\tau^{-3}2$ |
molar volume |
$5.15485(23) \times
10^{99}$
$\left[\text{m}_\text{P}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{4}\tau^{3}2^{-1}$ |
molar entropy |
$1.576385(17) \times
10^{18}$
$\left[\text{m}_\text{P}^{-1}\right]/\left[\text{J}
\cdot \text{K}^{-1} \text{mol}^{-1}\right]$ |
$\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}\cdot
\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}\cdot 2^{-1}$ |
molar energy |
$1.11265005644(34)
\times 10^{-14}$
$\left[\mathbb{1}\right]/\left[\text{J} \cdot
\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
2^{-1}$ |
molar conductivity |
$4.036977(89) \times
10^{31}$
$\left[\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}\right]/\left[\text{S}
\cdot \text{m}^2 \text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-1}\text{c}^{2}\text{e}^{-2}\text{R}_{\infty}^{-1}\alpha^{3}\mu_\text{eu}\cdot
\text{m}_\text{P}^{2}2^{-1}$ |
molar susceptibility |
$5.15485(23) \times
10^{99}$
$\left[\text{m}_\text{P}^{-4}\right]/\left[\text{m}^{3}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-4}\text{c}^{4}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{4}\tau^{3}2^{-1}$ |
catalysis |
$2.477101(55) \times
10^{-39}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{kat}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{2}\text{c}^{-3}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
specificity |
$2.779105(92) \times
10^{56}$
$\left[\text{m}_\text{P}^{-3}\right]/\left[\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}\right]$ |
$\text{N}_\text{A}^{-1}\hbar^{-3}\text{c}^{2}\text{R}_{\infty}^{-1}\alpha^{2}\mu_\text{eu}\cdot
\text{m}_\text{P}^{3}\tau^{2}2^{-1}$ |
diffusion flux |
$2.226308(49) \times
10^{-22}$
$\left[\text{m}_\text{P}^{2}\right]/\left[\text{m}^{-2}\text{s}\cdot
\text{mol}\right]$ |
$\text{N}_\text{A}\cdot
\hbar^{2}\text{c}^{-1}\text{R}_{\infty}\cdot
\alpha^{-2}\mu_\text{eu}^{-1}\text{m}_\text{P}^{-2}\tau^{-1}2$ |
|
Unified |
SI2019 |
PlanckGauss |
angle |
$\text{A}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
solid angle |
$\text{A}^{2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
time |
$\text{T}$ |
$\text{s}$ |
$\text{m}_\text{P}^{-1}$ |
angular time |
$\text{T}\cdot
\text{A}^{-1}$ |
$\text{s}$ |
$\text{m}_\text{P}^{-1}$ |
length |
$\text{L}$ |
$\text{m}$ |
$\text{m}_\text{P}^{-1}$ |
angular length |
$\text{L}\cdot
\text{A}^{-1}$ |
$\text{m}$ |
$\text{m}_\text{P}^{-1}$ |
area |
$\text{L}^{2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{P}^{-2}$ |
angular area |
$\text{L}^{2}\text{A}^{-2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{P}^{-2}$ |
volume |
$\text{L}^{3}$ |
$\text{m}^{3}$ |
$\text{m}_\text{P}^{-3}$ |
wavenumber |
$\text{L}^{-1}$ |
$\text{m}^{-1}$ |
$\text{m}_\text{P}$ |
angular wavenumber |
$\text{L}^{-1}\text{A}$ |
$\text{m}^{-1}$ |
$\text{m}_\text{P}$ |
fuel efficiency |
$\text{L}^{-2}$ |
$\text{m}^{-2}$ |
$\text{m}_\text{P}^{2}$ |
number density |
$\text{L}^{-3}$ |
$\text{m}^{-3}$ |
$\text{m}_\text{P}^{3}$ |
frequency |
$\text{T}^{-1}$ |
$\text{Hz}$ |
$\text{m}_\text{P}$ |
angular frequency |
$\text{T}^{-1}\text{A}$ |
$\text{Hz}$ |
$\text{m}_\text{P}$ |
frequency drift |
$\text{T}^{-2}$ |
$\text{Hz} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
stagnance |
$\text{L}^{-1}\text{T}$ |
$\text{m}^{-1}\text{s}$ |
$\mathbb{1}$ |
speed |
$\text{L}\cdot
\text{T}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}$ |
$\mathbb{1}$ |
acceleration |
$\text{L}\cdot
\text{T}^{-2}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{m}_\text{P}$ |
jerk |
$\text{L}\cdot
\text{T}^{-3}$ |
$\text{m}\cdot
\text{s}^{-3}$ |
$\text{m}_\text{P}^{2}$ |
snap |
$\text{L}\cdot
\text{T}^{-4}$ |
$\text{m}\cdot
\text{s}^{-4}$ |
$\text{m}_\text{P}^{3}$ |
crackle |
$\text{L}\cdot
\text{T}^{-5}$ |
$\text{m}\cdot
\text{s}^{-5}$ |
$\text{m}_\text{P}^{4}$ |
pop |
$\text{L}\cdot
\text{T}^{-6}$ |
$\text{m}\cdot
\text{s}^{-6}$ |
$\text{m}_\text{P}^{5}$ |
volume flow |
$\text{L}^{3}\text{T}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}$ |
$\text{m}_\text{P}^{-2}$ |
etendue |
$\text{L}^{2}\text{A}^{2}$ |
$\text{m}^{2}$ |
$\text{m}_\text{P}^{-2}$ |
photon intensity |
$\text{T}^{-1}\text{A}^{-2}$ |
$\text{Hz}$ |
$\text{m}_\text{P}$ |
photon irradiance |
$\text{L}^{-2}\text{T}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{P}$ |
photon radiance |
$\text{L}^{-2}\text{T}\cdot
\text{A}^{-2}$ |
$\text{Hz} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{P}$ |
|
Unified |
SI2019 |
PlanckGauss |
inertia |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{2}$ |
$\text{kg}$ |
$\text{m}_\text{P}$ |
mass |
$\text{M}$ |
$\text{kg}$ |
$\text{m}_\text{P}$ |
mass flow |
$\text{M}\cdot
\text{T}^{-1}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
linear density |
$\text{M}\cdot
\text{L}^{-1}$ |
$\text{kg}\cdot
\text{m}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
area density |
$\text{M}\cdot
\text{L}^{-2}$ |
$\text{kg}\cdot
\text{m}^{-2}$ |
$\text{m}_\text{P}^{3}$ |
density |
$\text{M}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-3}$ |
$\text{m}_\text{P}^{4}$ |
specific weight |
$\text{F}\cdot
\text{L}^{-3}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-2}$ |
$\text{m}_\text{P}^{5}$ |
specific volume |
$\text{M}^{-1}\text{L}^{3}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{m}_\text{P}^{-4}$ |
force |
$\text{F}$ |
$\text{N}$ |
$\text{m}_\text{P}^{2}$ |
specific force |
$\text{F}\cdot
\text{M}^{-1}$ |
$\text{m}\cdot
\text{s}^{-2}$ |
$\text{m}_\text{P}$ |
gravity force |
$\text{F}^{-1}\text{M}\cdot \text{L}\cdot
\text{T}^{-2}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
pressure |
$\text{F}\cdot
\text{L}^{-2}$ |
$\text{Pa}$ |
$\text{m}_\text{P}^{4}$ |
compressibility |
$\text{F}^{-1}\text{L}^{2}$ |
$\text{Pa}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
viscosity |
$\text{F}\cdot
\text{L}^{-2}\text{T}$ |
$\text{Pa} \cdot
\text{s}$ |
$\text{m}_\text{P}^{3}$ |
diffusivity |
$\text{L}^{2}\text{T}^{-1}$ |
$\text{m}^{2}\text{s}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
rotational inertia |
$\text{M}\cdot
\text{L}^{2}$ |
$\text{kg}\cdot
\text{m}^{2}$ |
$\text{m}_\text{P}^{-1}$ |
impulse |
$\text{F}\cdot
\text{T}$ |
$\text{N} \cdot
\text{s}$ |
$\text{m}_\text{P}$ |
momentum |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{N} \cdot
\text{s}$ |
$\text{m}_\text{P}$ |
angular momentum |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{A}^{-1}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
yank |
$\text{M}\cdot
\text{L}\cdot \text{T}^{-3}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{P}^{3}$ |
energy |
$\text{F}\cdot
\text{L}$ |
$\text{J}$ |
$\text{m}_\text{P}$ |
specific energy |
$\text{F}\cdot
\text{M}^{-1}\text{L}$ |
$\text{J} \cdot
\text{kg}^{-1}$ |
$\mathbb{1}$ |
action |
$\text{F}\cdot
\text{L}\cdot \text{T}$ |
$\text{J} \cdot
\text{s}$ |
$\mathbb{1}$ |
fluence |
$\text{F}\cdot
\text{L}^{-1}$ |
$\text{N} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{P}^{3}$ |
power |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}$ |
$\text{W}$ |
$\text{m}_\text{P}^{2}$ |
power density |
$\text{F}\cdot
\text{L}^{-2}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-3}$ |
$\text{m}_\text{P}^{5}$ |
irradiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{P}^{4}$ |
radiance |
$\text{F}\cdot
\text{L}^{-1}\text{T}^{-1}\text{A}^{-2}$ |
$\text{W} \cdot
\text{m}^{-2}$ |
$\text{m}_\text{P}^{4}$ |
radiant intensity |
$\text{F}\cdot
\text{L}\cdot \text{T}^{-1}\text{A}^{-2}$ |
$\text{W}$ |
$\text{m}_\text{P}^{2}$ |
spectral flux |
$\text{F}\cdot
\text{T}^{-1}$ |
$\text{N} \cdot
\text{s}^{-1}$ |
$\text{m}_\text{P}^{3}$ |
spectral exposure |
$\text{F}\cdot
\text{L}^{-1}\text{T}$ |
$\text{J} \cdot
\text{m}^{-2} \cdot \text{Hz}^{-1}$ |
$\text{m}_\text{P}^{2}$ |
sound exposure |
$\text{F}^{2}\text{L}^{-4}\text{T}$ |
$\text{kg}^{2}\text{m}^{-2}\text{s}^{-3}$ |
$\text{m}_\text{P}^{7}$ |
impedance |
$\text{F}\cdot
\text{L}^{-5}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-4}\text{s}^{-1}$ |
$\text{m}_\text{P}^{6}$ |
specific impedance |
$\text{F}\cdot
\text{L}^{-3}\text{T}$ |
$\text{kg}\cdot
\text{m}^{-2}\text{s}^{-1}$ |
$\text{m}_\text{P}^{4}$ |
admittance |
$\text{F}^{-1}\text{L}^{5}\text{T}^{-1}$ |
$\text{kg}^{-1}\text{m}^{4}\text{s}$ |
$\text{m}_\text{P}^{-6}$ |
compliance |
$\text{M}^{-1}\text{T}^{2}$ |
$\text{m} \cdot
\text{N}^{-1}$ |
$\text{m}_\text{P}^{-3}$ |
inertance |
$\text{M}\cdot
\text{L}^{-4}$ |
$\text{kg}\cdot
\text{m}^{-4}$ |
$\text{m}_\text{P}^{5}$ |
|
Unified |
SI2019 |
PlanckGauss |
charge |
$\text{Q}$ |
$\text{C}$ |
$\text{e}_\text{n}$ |
charge density |
$\text{L}^{-3}\text{Q}$ |
$\text{m}^{-3}\text{C}$ |
$\text{m}_\text{P}^{3}\text{e}_\text{n}$ |
linear charge
density |
$\text{L}^{-1}\text{Q}$ |
$\text{m}^{-1}\text{C}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
exposure |
$\text{M}^{-1}\text{Q}$ |
$\text{kg}^{-1}\text{C}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
mobility |
$\text{F}\cdot
\text{L}^{3}\text{T}^{-1}\text{Q}^{-1}$ |
$\text{m}^2
\text{s}^{-1} \text{V}^{-1}$ |
$\text{e}_\text{n}^{-1}$ |
current |
$\text{T}^{-1}\text{Q}$ |
$\text{s}^{-1}\text{C}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
current density |
$\text{L}^{-2}\text{T}^{-1}\text{Q}$ |
$\text{m}^{-2}\text{s}^{-1}\text{C}$ |
$\text{m}_\text{P}^{3}\text{e}_\text{n}$ |
resistance |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot \text{Q}^{-2}$ |
$\Omega$ |
$\text{e}_\text{n}^{-2}$ |
conductance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S}$ |
$\text{e}_\text{n}^{2}$ |
resistivity |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot \text{Q}^{-2}$ |
$\Omega \cdot
\text{m}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
conductivity |
$\text{F}^{-1}\text{L}^{-2}\text{T}^{-1}\text{Q}^{2}$ |
$\text{S} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}$ |
capacitance |
$\text{F}^{-1}\text{L}^{-1}\text{Q}^{2}$ |
$\text{F}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{2}$ |
inductance |
$\text{F}\cdot
\text{L}\cdot \text{T}^{2}\text{Q}^{-2}$ |
$\text{H}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
reluctance |
$\text{F}^{-1}\text{L}^{-1}\text{T}^{-2}\text{Q}^{2}\text{R}\cdot
\text{C}^{-2}$ |
$\text{H}^{-1}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{2}$ |
permeance |
$\text{F}\cdot
\text{L}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-2}$ |
permittivity |
$\text{F}^{-1}\text{L}^{-2}\text{Q}^{2}\text{R}$ |
$\text{F} \cdot
\text{m}^{-1}$ |
$\text{e}_\text{n}^{2}$ |
permeability |
$\text{F}\cdot
\text{T}^{2}\text{Q}^{-2}\text{R}^{-1}\text{C}^{2}$ |
$\text{H} \cdot
\text{m}^{-1}$ |
$\text{e}_\text{n}^{-2}$ |
susceptibility |
$\text{R}^{-1}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
specific
susceptibility |
$\text{M}^{-1}\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{kg}^{-1}\text{m}^{3}$ |
$\text{m}_\text{P}^{-4}$ |
demagnetizing factor |
$\text{R}$ |
$\mathbb{1}$ |
$\mathbb{1}$ |
vector potential |
$\text{F}\cdot
\text{T}\cdot \text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}$ |
electric potential |
$\text{F}\cdot
\text{L}\cdot \text{Q}^{-1}$ |
$\text{V}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}^{-1}$ |
magnetic potential |
$\text{T}^{-1}\text{Q}\cdot \text{R}\cdot
\text{C}^{-1}$ |
$\text{s}^{-1}\text{C}$ |
$\text{m}_\text{P}\cdot
\text{e}_\text{n}$ |
electric field |
$\text{F}\cdot
\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}^{-1}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ |
magnetic field |
$\text{L}^{-1}\text{T}^{-1}\text{Q}\cdot
\text{R}\cdot \text{C}^{-1}$ |
$\text{m}^{-1}\text{s}^{-1}\text{C}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
electric flux |
$\text{F}\cdot
\text{L}^{2}\text{Q}^{-1}$ |
$\text{V} \cdot
\text{m}$ |
$\text{e}_\text{n}^{-1}$ |
magnetic flux |
$\text{F}\cdot
\text{L}\cdot \text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb}$ |
$\text{e}_\text{n}^{-1}$ |
electric
displacement |
$\text{L}^{-2}\text{Q}\cdot \text{R}$ |
$\text{m}^{-2}\text{C}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
magnetic flux
density |
$\text{F}\cdot
\text{L}^{-1}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{T}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}^{-1}$ |
electric dipole
moment |
$\text{L}\cdot
\text{Q}$ |
$\text{m}\cdot
\text{C}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
magnetic dipole
moment |
$\text{L}^{2}\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{J} \cdot
\text{T}^{-1}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}$ |
electric
polarizability |
$\text{F}^{-1}\text{L}\cdot
\text{Q}^{2}$ |
$\text{kg}^{-1}\text{s}^{2}\text{C}^{2}$ |
$\text{m}_\text{P}^{-3}\text{e}_\text{n}^{2}$ |
magnetic
polarizability |
$\text{L}^{3}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}$ |
$\text{m}_\text{P}^{-3}$ |
magnetic moment |
$\text{F}\cdot
\text{L}^{2}\text{T}\cdot
\text{Q}^{-1}\text{C}$ |
$\text{Wb} \cdot
\text{m}$ |
$\text{m}_\text{P}^{-1}\text{e}_\text{n}^{-1}$ |
specific
magnetization |
$\text{F}^{-1}\text{M}\cdot
\text{L}^{-2}\text{T}^{-1}\text{Q}\cdot
\text{C}^{-1}$ |
$\text{m}^{-3}\text{s}\cdot \text{C}$ |
$\text{m}_\text{P}^{2}\text{e}_\text{n}$ |
pole strength |
$\text{L}\cdot
\text{T}^{-1}\text{Q}\cdot
\text{A}^{-1}\text{C}^{-1}$ |
$\text{m}\cdot
\text{s}^{-1}\text{C}$ |
$\text{e}_\text{n}$ |
|
Unified |
SI2019 |
PlanckGauss |
molar mass |
$\text{M}\cdot
\text{N}^{-1}$ |
$\text{kg}\cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molality |
$\text{M}^{-1}\text{N}$ |
$\text{kg}^{-1}\text{mol}$ |
$\mathbb{1}$ |
molar amount |
$\text{N}$ |
$\text{mol}$ |
$\text{m}_\text{P}$ |
molarity |
$\text{L}^{-3}\text{N}$ |
$\text{m}^{-3}\text{mol}$ |
$\text{m}_\text{P}^{4}$ |
molar volume |
$\text{L}^{3}\text{N}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
molar entropy |
$\text{F}\cdot
\text{L}\cdot \Theta^{-1}\text{N}^{-1}$ |
$\text{J} \cdot
\text{K}^{-1} \text{mol}^{-1}$ |
$\text{m}_\text{P}^{-1}$ |
molar energy |
$\text{F}\cdot
\text{L}\cdot \text{N}^{-1}$ |
$\text{J} \cdot
\text{mol}^{-1}$ |
$\mathbb{1}$ |
molar conductivity |
$\text{F}^{-1}\text{T}^{-1}\text{Q}^{2}\text{N}^{-1}$ |
$\text{S} \cdot
\text{m}^2 \text{mol}^{-1}$ |
$\text{m}_\text{P}^{-2}\text{e}_\text{n}^{2}$ |
molar susceptibility |
$\text{L}^{3}\text{N}^{-1}\text{A}^{-1}\text{R}^{-1}$ |
$\text{m}^{3}\text{mol}^{-1}$ |
$\text{m}_\text{P}^{-4}$ |
catalysis |
$\text{T}^{-1}\text{N}$ |
$\text{kat}$ |
$\text{m}_\text{P}^{2}$ |
specificity |
$\text{L}^{3}\text{T}^{-1}\text{N}^{-1}$ |
$\text{m}^{3}\text{s}^{-1}\text{mol}^{-1}$ |
$\text{m}_\text{P}^{-3}$ |
diffusion flux |
$\text{L}^{-2}\text{T}\cdot \text{N}$ |
$\text{m}^{-2}\text{s}\cdot
\text{mol}$ |
$\text{m}_\text{P}^{2}$ |